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Here we consider stationary states for nonlinear Schrödinger equations in any spatial dimension n with

symmetric double well potentials. These states may bifurcate as the strength of the nonlinear term in-

creases and we observe two different pictures depending on the value of the nonlinearity power: a super-

critical pitchfork bifurcation, and a subcritical pitchfork bifurcation with two asymmetric branches oc-

curring as the result of saddle-node bifurcations. We show that in the semiclassical limit, or for a large

barrier between the two wells, the first kind of bifurcation always occurs when the nonlinearity power is

less than a critical value; in contrast, when the nonlinearity power is larger than such a critical value then

we always observe the second scenario. The remarkable fact is that such a critical value is a universal con-

stant in the sense that it does not depend on the shape of the double well potential and on the dimension n.
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The spontaneous symmetry breaking phenomenon is a
rather important effect that arises in a wide range of
physical systems modeled by nonlinear equations. In clas-
sical physics, spontaneous symmetry breaking occurs in
optics, and it has been experimentally observed for laser
beams in Kerr media and focusing nonlinearity [1,2].
Another natural setting in which spontaneous symmetry
breaking phenomenon may arise is for Bose-Einstein con-
densates with an effective double well formed by the
combined effect of a parabolic-like trap and a periodical-
like optical lattice [3–5]. Also, the study of gases of
pyramidal molecules, such as the ammonia NH3, is a topic
where spontaneous symmetry breaking phenomenon plays
a crucial role. A nonlinear mean field model of a gas of
pyramidal molecules has been introduced in [6,7]; in this
model spontaneous symmetry breaking explaining the
presence of two asymmetrical degenerate ground states,
corresponding to the different localization of the mole-
cules, has been predicted with the full agreement with
experimental data [7,8].

The n-dimensional linear Schrödinger equation with a
symmetric double well potential has stationary states of a
definite even and odd parity. However, the introduction of a
nonlinear term (which usually models, in quantum me-
chanics, an interacting many-particle system) may give
rise to asymmetrical states related to a spontaneous sym-
metry breaking effect. The governing nonlinear
Schrödinger equations

i@@tc ¼ H0c þ �jc j2�c (1)

are of Gross-Pitaevskii type, where � is the strength of the
nonlinear term, �> 0 is the nonlinearity power, and H0 is
the linear Hamiltonian with a symmetric double well po-
tential. The wave function c belongs to the Hilbert space
L2ðRnÞwith norm k � k, under the normalization to the unit
kc k ¼ 1. When � ¼ 1 we have a cubic nonlinearity and

the resulting equation has been largely studied [9–14].
Recently, for higher values of � the resulting equation
has been the object of an increasing interest with several
interesting physical applications [15].
For cubic nonlinearities a family of asymmetric station-

ary states bifurcates when the adimensional nonlinear pa-
rameter �, associated with the strength � of the nonlinear
perturbation by (9), assumes the value �? given by (12).
The nonlinear ground state branch consists of states having
the same symmetry of the linear stationary state, and
typically we observe also an exchange of the stability
properties. The symmetric stationary state is stable for �
less than the value �?, and for � larger than �? the
symmetric stationary state becomes unstable and the new
asymmetrical states are stable: that is we have a supercriti-
cal pitchfork bifurcation as in Fig. 1 panel (a) where the
variable z belonging to the interval [� 1, þ1] represents
the imbalance function. The imbalance function, defined in
Eq. (10), is related to the position of mean value of the
stationary state: when z ¼ 0 the state in invariant (up to a
phase term) with respect to the symmetry of the double
well potential. In contrast, when z takes the end-point
values z ¼ �1 then the state is localized on one well
(conventionally the right-hand side one for z ¼ þ1).
However, we should remark that the picture of Fig. 1

panel (a) still holds true also for other values of the
nonlinearity power, for instance for � ¼ 2 and � ¼ 3,
but for higher values of this parameter we observe a rather
different picture [14]. In Fig. 1 panel (b) we consider the
case of nonlinearity power � ¼ 5, in such a case a couple
of new asymmetrical stationary states sharply appear as
saddle-node bifurcations when � is equal to a given value
�þ � 4:41; then, for increasing values of �, the two
unstable solutions disappear at � ¼ �? ¼ 6:4 showing a
subcritical pitchfork bifurcation. Thus, for � between the
two values �þ � 4:41 and �? ¼ 6:4 we observe the co-

PRL 103, 194101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 NOVEMBER 2009

0031-9007=09=103(19)=194101(4) 194101-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.194101


existence of three stable stationary states: one of them
corresponds to the symmetric stationary state which has
the same symmetry properties of the potential, while the
other two are localized on only one well.

In this Letter we investigate the bifurcation picture of the
stable stationary states normalized to the L2 unit of Eq. (1),
for any positive value of the nonlinearity power �, as a
function of the parameter �. In particular, in the semiclas-
sical limit (or, equivalently, in the limit of large distance
between the wells) we will see that the simple pitchfork
bifurcation as in Fig. 1 panel (a) always occurs when the
power � is less than a critical value �threshold, and the
couple of saddle-node bifurcations with a subcritical pitch-
fork bifurcation as in Fig. 1 panel (b) always appears when
the power� is larger than �threshold. The remarkable fact is
that such a critical value �threshold is a universal critical
power, in the sense that it does not depend on the shape of
the double well potential and on the spatial dimension.
Such a critical value is found to be equal to

�threshold ¼ ð3þ ffiffiffiffiffiffi
13

p Þ=2: (2)

The linear Hamiltonian we consider,

H0 ¼ � @
2

2m
�þ V; (3)

has a symmetric double well potential VðxÞ ¼ V½SðxÞ�,
where SðxÞ is the symmetric spatial inversion with respect
to a given hyperplane� of the spaceRn. The potential has
two nondegenerate minima at x ¼ x�, xþ ¼ Sðx�Þ, such
that VðxÞ>Vðx�Þ, 8 x 2 Rn n fx�g, and rVðx�Þ ¼ 0
and Hess Vðx�Þ> 0. If we consider the semiclassical limit
of @ small enough [14,16], or equivalently the limit of large
distance between the two wells [11,17], then it is well
known that the discrete spectrum of H0 is given by a
sequence of doublets. Let �� be a doublet of nondegener-
ate eigenvalues (�þ < ��), for instance the lowest two
eigenvalues of H0, then

inf
�2�ðH0Þnf��g

½�� ��� � C@;

for some positive constant C> 0 independent of @; �ðH0Þ
is the spectrum of H0. The splitting between the two
eigenvalues ! ¼ 1

2 ð�� � �þÞ exponentially vanishes as @

goes to zero [18]. The normalized eigenvectors ’� asso-
ciated to �� are even and odd real-valued functions with

respect to the hyperplane �: ’�½SðxÞ� ¼ �’�ðxÞ. The
normalized right- and left-hand side vectors

’R ¼ ð’þ þ ’�Þ=
ffiffiffi
2

p
and ’L ¼ ð’þ � ’�Þ=

ffiffiffi
2

p
;

usually named single-well states, are localized on only one
well and their supports practically do not overlap in the
sense that

max
x2Rn

j’RðxÞ’LðxÞj ¼ Oðe�C=@Þ; as @ ! 0; (4)

for some positive constant C.
The time dynamics associated to the linear Hamiltonian

(3) is well studied [19]: when the state c is initially
prepared on the space spanned by the two vectors ’R;L,

then it performs a beating motion between the two wells
with beating period T ¼ 2�@=!. Since the beating period
T plays the role of the unit of time then we rescale the time
� ¼ !t=@; furthermore, we also consider the gauge choice

c ðx; tÞ ! ei�t=@c ðx; tÞ, where � ¼ ð�þ þ ��Þ=2. Then
Eq. (1) takes the form

i!@�c ¼ ½H0 ���c þ �jc j2�c (5)

where we apply the two-level approximation by restricting
the wave function c to the space spanned by the two
single-well states ’R;L:

c ¼ aR’R þ aL’L; (6)

where aR and aL are unknown complex-valued functions
depending on the time �. In such an approximation we have
neglected the contributions to the wave function c from
the continuous spectrum and from the other discrete linear
eigenstates; even if this approximation can be rigorously
justified under some assumptions [11,14], here we do not
dwell on these details. Since

H0c ¼ aR½�’R �!’L� þ aL½�!’R þ�’L�
then, by substituting (6) in (5) and projecting the resulting
equation onto the one-dimensional spaces spanned by the
single-well states ’R and ’L, it takes the form (here-
after 0 denotes the derivative with respect to �)

i!a0R ¼ �!aL þ �h’R; jc j2�c i
i!a0L ¼ �!aR þ �h’L; jc j2�c i (7)

where h�; �i denotes the scalar product in the Hilbert space

(a) (b)
FIG. 1. In this figure we plot the graph
of the stationary states around the mini-
mum of the energy (full lines represent
stable stationary states, broken lines rep-
resent unstable stationary states) as a
function of the nonlinearity parameter
� for cubic nonlinearity (i.e., for � ¼
1) in panel (a), and for higher nonlinear-
ity power � ¼ 5 in panel (b). The vari-
able z represents the imbalance function.
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L2ðRnÞ. From (4) and since ’R½SðxÞ� ¼ ’LðxÞ, then a
straightforward calculation led us to the following results
in the semiclassical limit:

h’R; jc j2�c i ¼ cjaRj2�aR þOðe�CR=@Þ
h’L; jc j2�c i ¼ cjaLj2�aL þOðe�CL=@Þ

for some positive constants CR and CL, and where the
constant c is the same in both equations and it is given by

c ¼ h’R; j’Rj2�’Ri ¼ h’L; j’Lj2�’Li:
Thus, the two-level approximation (7) takes the following
form up to an exponentially small error as @ goes to zero

ia0R ¼ �aL þ �jaRj2�aR ia0L ¼ �aR þ �jaLj2�aL
(8)

where

� ¼ c�=! (9)

is an adimensional parameter which only depends on the
strength � of the nonlinear term and, by means of the
constant c and of the splitting!, on the shape of the double
well potential. We perform now the qualitative analysis of
the two-level approximation (8) by looking for the sta-
tionary states and studying their dynamical stability/insta-
bility properties. To this end we assume, for the sake of
definiteness, �> 0 and let

aR ¼ pei�; aL ¼ qei	; z¼ p2�q2; 
¼��	

(10)

where p and q are such that p2 þ q2 ¼ kc k2 ¼ 1. The
case of �< 0 is similarly treated; we may remark that in
such a case Eq. (1) is of focusing type and blowup and
instabilities could occur, actually in the semiclassical limit
Eq. (1) is proved to be globally well posed for any � [14].
The imbalance function z takes value within the interval
[�1, 1], the phase 
 is a torus variable with values in the
interval ½0; 2�Þ. Then, (8) takes the Hamiltonian form


0 ¼ @zH ; z0 ¼ �@
H (11)

with Hamiltonian

H ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
cos
� �

ð1þ zÞ�þ1 þ ð1� zÞ�þ1

2�ð�þ 1Þ :

Equation (11) always has, respectively, symmetrical and
antisymmetrical stationary solutions (
1, z1) and (
2, z2),
where 
1 ¼ 0 and 
2 ¼ � and where z1 ¼ z2 ¼ 0.
Furthermore, asymmetrical stationary solutions may, re-
spectively, occur for 
 ¼ 0 and 
 ¼ � as solutions of
equations fþðzÞ ¼ 0 and f�ðzÞ ¼ 0, where

f�ðzÞ ¼ �2z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� �½ð1þ zÞ� � ð1� zÞ��2��:

Since we have assumed �> 0 then the derivative dfþ
dz takes

only negative values for any z 2 ½�1;þ1� and thus
fþðzÞ ¼ 0 has only the solution z ¼ 0. On the other

hand, equation f�ðzÞ ¼ 0 might have other solutions com-
ing from a pitchfork bifurcation of the stationary solution
z ¼ 0 as we can see in Fig. 1 panel (a) for � larger than the
value

�? ¼ lim
z!0

�ðzÞ ¼ 2�=� (12)

where �ðzÞ is obtained by solving equation f�ðzÞ ¼ 0with
respect to �:

�ðzÞ ¼ 2�þ1z=f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
½ð1þ zÞ� � ð1� zÞ��g:

In particular, in Fig. 1 panel (b) we observe that in the
case of� ¼ 5 a couple of saddle-node bifurcations appears
when � 2 ð�þ; �?Þ, where �þ is a new critical value, and
the unstable stationary solutions will merge with the anti-
symmetrical solution corresponding to z ¼ 0 at � ¼ ��.
We then observe a double saddle-node bifurcation and a
subcritical pitchfork bifurcation. The couple of saddle-
node bifurcations appears at �þ where �þ ¼ �ðzþÞ and
zþ is a zero of the derivative of �ðzÞ; by means of a
straightforward calculation it follows that zþ actually is a
nonzero real-valued solution within the interval (0, þ1) of
the equation gðz; �Þ ¼ gð�z;�Þ where

gðz; �Þ ¼ ðz2�� z�þ 1Þð1þ zÞ�:
For instance, we have that �þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

27=2
p � 3:67, for � ¼

4, and �þ � 4:41 for � ¼ 5.
We thus have a transition from the bifurcation picture as

in panel (a) of Fig. 1 to the more complex bifurcation
picture as in panel (b) of Fig. 1, and this transition occurs
when the nonlinearity power� is equal to a threshold value

�threshold such that
d2�ðzÞ
dz2

¼ 0 at z ¼ 0, that is the two saddle

nodes will merge with the stationary solution z ¼ 0. Since

d2�ðzÞ
dz2

��������z¼0
¼ 2�ð3�þ 1��2Þ

9�

then the threshold value is given by (2). We may remark
that this threshold in a universal value since it does not
depend on the parameters of the double well model and on
the spatial dimension.
The qualitative behavior of the solutions of Eq. (11) is

then studied by means of the conservation of the energyH
as done, for instance, by [6,13] for cubic nonlinearity
(where � ¼ 1). In Fig. 2 we plot the integral paths of the
equation H ¼ E for some values of the energy E, where
� ¼ 5. In panel (a) where � ¼ 2<�þ � 4:41 we can
only see closed curves corresponding to beating periodic
motions between the two wells. In panel (b), where �þ �
4:41<� ¼ 5<�? ¼ 6:4, we have three stable stationary
solutions (circle points), two of them are localized on just
one well and closed curves surrounding them correspond to
periodic motions inside the well, without the beating effect.
In panel (c), where �? ¼ 6:4<� ¼ 6:5; we have two
stable stationary solutions (circle points) localized on just
one well and we do not observe a beating motion around
the stationary solution at z ¼ 0.
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In conclusion, in this Letter we have proved the exis-
tence on a universal critical nonlinearity power (2) for
nonlinear Schrödinger equations with double well potential
in the semiclassical limit. For nonlinearity power below
this value we always observe a supercritical pitchfork
bifurcation phenomenon as the strength of the nonlinear
perturbation increases, and the new asymmetrical station-
ary states gradually becomes localized on the single wells.
In contrast, for nonlinearity power above (2) we always
observe a more complicate scenario: the appearance of a
couple of saddle-node bifurcations where the asymmetrical
unstable stationary solutions will merge with the stationary
solution at z ¼ 0 drawing a subcritical pitchfork bifurca-
tion as the strength of the nonlinear perturbation increases.
The new physical relevant effect associated with such a
new scenario is the sharp appearance of asymmetrical sta-
tionary solutions fully localized on the single wells.
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(a) (b)
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FIG. 2. Integral paths of the equation
H ðz; 
Þ ¼ E for some value of the en-
ergy E, where � ¼ 5. Circle points and
cross points, respectively, correspond to
the stable and unstable stationary solu-
tions. Panel (a) corresponds to � ¼ 2,
less than �þ � 4:41; panel (b) corre-
sponds to � ¼ 5, which lies between
the two values �þ and �? ¼ 6:4;
panel (c) corresponds to � ¼ 6:5 larger
than �? ¼ 6:4. For nonlinearity less than
�threshold we only have the pictures of
panels (a) and (c).
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