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We show that broadband biphoton wave packets produced via sponateous parametric down-conversion

in crystals with linearly aperiodic poling can be easily compressed in time using the effect of group-

velocity dispersion in optical fibers. This result could foster important developments in quantum

metrology and lithography.
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One of the central problems in quantum optics is the
generation of nonclassical light with given spectral and
spatiotemporal properties. In particular, for the needs of
quantum metrology and quantum lithography it is impor-
tant to obtain two-photon wave packets with small corre-
lation times. Such wave packets should naturally manifest
a broad frequency spectrum. Several ideas have been put
forward in this direction, all based on two-photon states
produced via spontaneous parametric down-conversion
(SPDC). Among them, one can mention prisms or diffrac-
tion gratings introducing a frequency chirp [1], SPDC in
aperiodically poled crystals [2–4], and SPDC in crystals
with temperature gradients [5]. However, a broad spectrum
of two-photon light does not necessarily imply small cor-
relation times, although the inverse is true [6–8]. This is
similar to the fact that a broadband pulse does not have to
be short in time, although the spectrum of a short pulse is
always broad. The spectrum broadening introduced in
Refs. [1,4,5] is in fact inhomogeneous; as a result, the
two-photon spectral amplitude in all these cases has a
phase depending nonlinearly on the frequency. This phase
(a frequency chirp [9]) makes two-photon wave packets
not Fourier-transform limited. Therefore, they are not short
in time despite their broad frequency spectrum. As it was
mentioned in Ref. [3], time compression of such two-
photon wave packets requires compensation for their fre-
quency chirp. At the same time, the way to eliminate the
chirp was not specified.

In this Letter we show that, under certain conditions,
biphoton wave packets can be made nearly Fourier-
transform limited and hence compressed by injecting one
of the photons of a pair in a standard optical fiber and
exploiting the effect of group-velocity dispersion (GVD).
No specially engineered fibers (for instance, with negative
GVD) are necessary. This suggests an easy way of achiev-
ing extremely short correlation times for two-photon light.

Consider generation of two-photon light via spontane-
ous parametric down-conversion (SPDC) from a cw pump
in an aperiodically poled crystal. From the viewpoint of
applications and for simplifying the calculation, it is con-
venient to assume that signal and idler photons are distin-

guishable, due to either frequency nondegenerate or type-II
phase matching. Below, we consider phase matching to be
type-II, collinear, and frequency degenerate, with idler
(extraordinary) and signal (ordinary) radiations centered
at frequency !0. The two-photon state can be written as

jc i ¼
Z

d�Fð�Þj!0 ��iij!0 þ�is; (1)

where j!iiðsÞ denotes the idler (signal) photon state with

frequency !. The two-photon spectral amplitude (TPSA)
Fð�Þ determines all spectral and temporal properties of
two-photon light. In particular, its squared module gives
the frequency spectra of signal and idler radiation,
Is;ið!Þ / jFð!�!0Þj2. Its Fourier transform can be called

time two-photon amplitude (TTPA) [10],

Fð�Þ ¼
Z

d�ei��Fð�Þ; (2)

its squared module giving the second-order Glauber’s cor-

relation function [6,7]: Gð2Þð�Þ ¼ jFð�Þj2. The TPSA is
determined by the distribution of the quadratic nonlinearity
�ðzÞ along the crystal [3,10,11]:

Fð�Þ /
Z 0

�L
dz�ðzÞeiðkiþks�kpÞz: (3)

Here, L is the crystal length and ki, ks, kp are wave vectors

of the idler, signal, and pump waves, respectively. Let the

spatial dependence of the quadratic nonlinearity be �ðzÞ ¼
�0e

iKðzÞðzþL=2Þ, where the inverse grating vector K has a
linear dependence on the coordinate, KðzÞ ¼ K0 � �ðzþ
L=2Þ [3,4,9], and K0 provides quasiphasematching:
kið!0Þ þ ksð!0Þ � kp þ K0 ¼ 0 at the center of the crys-

tal. It is convenient to expand the wave vectors around the
exact quasiphasematching frequency,

ki ¼ kið!0Þ � k0i�þ 1
2k

00
i �

2;

ks ¼ ksð!0Þ þ k0s�þ 1
2k

00
s�

2:
(4)

Here, k0i;s and k00i;s are the first and second derivatives of the
dispersion law evaluated at !0, related to the group veloc-
ity and group velocity dispersion, respectively.
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Denoting D � k0s � k0i and � � 1
2 ðk00i þ k00s Þ, we obtain

the TPSA in the form

Fð�Þ / e�iD�ðL=2Þ�i��2ðL=2Þ Z L=2

�L=2
d��0e

iðD�þ��2Þ��i��2 ;

(5)

where � ¼ zþ L=2.
Suppose that the spectrum is not too broad compared to

the difference of group velocities of the signal and idler
radiation, so that the condition����������D

��������� 1 (6)

holds true. Then the wave vector mismatch can be written
up to linear terms in frequency detuning �, and the TPSA
becomes

Fð�Þ / e�iD�ðL=2Þ Z L=2

�ðL=2Þ
d��0e

iD���i��2 ; (7)

which yields, similarly to Ref. [3],

Fð�Þ / exp

�
�iD�

L

2
þ i

D2�2

4�

�
�

�
erf

� ffiffiffiffi
i

�

s
L��D�

2

�

þ erf

� ffiffiffiffi
i

�

s
L�þD�

2

��
: (8)

In the case of large aperiodicity �, the spectral ampli-
tude has a rectangular shape. Indeed, let us introduce the
‘‘rectangle function’’ �ðx; a; bÞ � 1 for a � x � b and
�ðx; a; bÞ � 0 otherwise. Then, rewriting the integral in
(7) in terms of the rectangle function and applying the
convolution theorem, we get

Fð�Þ / e�iD�ðL=2ÞþiðD2�2=4�Þ Z 1

�1
dxsinc

�
Dx

L

2

�
� eiðD2ðx2�2�xÞ=4�Þ; (9)

where sincðxÞ � sinðxÞ=x. The first exponential term in the

integral, expfi D2x2

4� g, can be omitted if the typical scale of its

variation is much larger than the sinc-function width,
�=DL. This is the case if the aperiodicity is large enough,

j�j � �2

4L2
: (10)

Note that condition (10) is well satisfied in Refs. [3,4].
Then, the integral in Eq. (9) becomes

Fð�Þ / e�iD�ðL=2ÞþiðD2�2=4�Þ�
�
�;��L

D
;
�L

D

�
: (11)

We see that the spectrum of SPDC in a crystal with
linear KðzÞ dependence and large � is a rectangular func-
tion of width �� ¼ 2�L

D . The condition (10) means physi-

cally that the aperiodicity should induce a substantial
spectrum broadening. Now we can explicitly write the
condition (6) for the GVD of the nonlinear crystal to be

negligible, ���������L�D2

��������� 1: (12)

For given � and L, this condition is realized if the differ-
ence of signal (ordinary) and idler extraordinary group
velocities is large enough.
Increasing the aperiodicity �, one can make the spec-

trum as broad as desired. At the same time, this does not
make the TTPA (2) short in time because, due to the
nonlinear frequency-dependent phase factor in (8), the
TPSA is not Fourier-transform limited. Here we would
like to stress that because the squared module of TTPA is
the second-order Glauber’s correlation function, its width
gives the correlation time of the biphoton, i.e., the biphoton
entanglement time [6,7]. It is this time that is important for
two-photon effects such as two-photon absorption, two-
photon ionization, or up-conversion, and which can be
measured for two-photon light using these techniques
[12]. At the same time, coherence time of biphoton light
is defined as the width of the first-order Glauber’s correla-
tion function, which is the Fourier transform of the spec-
trum jFð�Þj2. This is why coherence time does not depend
on the phase factor in (8) and it is given by the inverse
width of the spectrum [4].
The Fourier transform of TPSA (7) is easily obtained by

introducing the rectangle function under the integral, ex-
tending the integration to infinite limits and using the
convolution theorem. As a result, we get

Fð�Þ / e�i�ððL=2Þ�ð�=DÞÞ2�ð�; 0; DLÞ; (13)

with the amplitude being the same as in the case of a bulk
or periodically poled crystal of length L. This means that
the TTPA of an aperiodiocally poled crystal is as broad as
in the absence of the aperiodicity �.
Consider now propagation of the extraordinary photon

of the biphoton field through an optical fiber of length l
with the inverse group velocity given by k0f � dk

d! j!¼!0
and

the GVD given by �f � 1
2

d2k
d!2 j!¼!0

. Propagation through

such a fiber leads to a phase factor expfiðk0f�þ �f�
2Þlg in

the two-photon spectral amplitude [6,7]. The first term in
the phase is linear in frequency and hence only shifts the
two-photon wave packet in time. The second term, being
quadratic in frequency, can compensate for the TPSA
chirp. This will happen under the condition

�flþD2

4�
¼ 0: (14)

For a fiber with positive GVD, this condition can be
satisfied for negative �, i.e., for the case where the poling
period reduces along the pump propagation through the
crystal.
In the case of large aperiodicity � satisfying (10), the

resulting TTPA can be calculated analytically as the
Fourier-transform of expression (11) with the quadratic
phase term removed. Clearly, it has the form of a sinc-
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function with the width being almost �L2 times as narrow
as for a periodically poled sample of the same length.

Figure 1 shows the spectrum of SPDC radiation calcu-
lated for the case of aperiodically poled KTP crystal with
L ¼ 0:8 cm, K0 ¼ 2441:8 cm�1 and � ¼ 1200 cm�2,
which corresponds (using the first-order quasi-phase-
matching) to the poling period varying from 18.47 to
42:40 �m. The pump at 458 nm is y polarized, as well
as the idler radiation, and all three wave vectors, as well as
the inverse grating vector, are directed along x. The dis-
persion dependencies are given by Sellmeier equations
from Ref. [13], without any additional assumptions. One
can see that the spectrum of the biphoton field is quite
broad (from 800 to 1200 nm) and has nearly rectangular
shape. This is due to the fact that condition (10) is fulfilled
very well. In fact, the aperiodicity leads to the spectral
broadening of more than 2 orders of magnitude. For com-
parison, the same figure shows the spectra of signal and
idler radiation for a crystal with the same length but
constant poling period K ¼ K0, corresponding to � ¼ 0.
Condition (12) is reasonably satisfied, since j �L�

D2 j � 0:16.

Figure 2 shows the second-order correlation function
calculated as the squared module of the Fourier transform
of expression (8). For comparison, second-order correla-
tion function of a crystal with constant poling period is
plotted in the same graph. Clearly, both distributions have

the same width, which means that the biphoton with the
broadened spectrum has the same correlation time as the
narrow band biphoton; i.e., it is not Fourier transform
limited. Evolution of the correlation time in an optical fiber
is demonstrated in Fig. 3 for the cases of �> 0 and �< 0,
when only the idler photon is transmitted through the fiber.
We see that at �> 0, propagation through the fiber only
broadens the biphoton wave packet, while in the case �<
0, which is achieved by simply exchanging the input and
output faces of the crystal, the biphoton is compressed. For
the calculation, we used the GVD of bulk fused silica [14],
because the waveguide contribution into GVD far from
zero dispersion point is negligibly small [15]. The value of

�f we used in the calculation was 1:359� 10�28 s2

cm . The

largest compression of the biphoton wave packet is
achieved at the fiber length l ¼ 16:927 cm. The second-
order correlation function in this case has a typical shape of
squared sinc-function with the FWHM equal to 12 fs. At
other lengths of the fiber, the two-photon wave packet is
broader. As the length of the fiber increases, the shape of

Gð2Þð�Þ becomes similar to the shape of the spectrum, an
effect that was studied in detail in Refs. [6,7]. Figure 4

shows the shapes of Gð2Þð�Þ after the biphoton propagation
through fibers of different length; the corresponding points
are shown in Fig. 3.
The model we have been using so far is based on the

linear dependence of the wave vector mismatch on the
frequency detuning from exact phase matching. This is
valid for type-II or frequency nondegenerate type-I
SPDC [16], under the condition (12). Similarly, the disper-
sion law of the fiber in our consideration was described by
a quadratic dependence; i.e., the third-order GVD of the
fiber was neglected. In order to see the effect of higher-
order GVD terms, we have performed exact numerical
calculation for the same case as considered above. The
results (Fig. 5) show that the effect of compression is
slightly reduced but there still remains a significant nar-
rowing of the TTPA, useful for applications. Even without
any optimization, the correlation time is reduced by more
than an order of magnitude. An exhaustive study of this

FIG. 1. Calculated spectrum of the signal or idler radiation
(solid line). Dashed line: the corresponding spectrum for a
crystal with K ¼ K0, reduced in the vertical scale by 2 102.

FIG. 2 (color online). Calculated second-order correlation
function of the biphoton in the case of aperiodic poling (black
solid line) and periodic poling (green dashed line).
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FIG. 3 (color online). TTPA width at the output of the fiber
versus the fiber length for �< 0 (red solid line) and �> 0 (grey
dashed line). Circles denote the points for which the shapes of
the second-order correlation function are shown in Fig. 4.
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effect and a search for optimized parameters of both the
crystal and the fiber will be presented in the nearest fu-
ture [17].

An interesting feature of Fig. 5 is that at the output of the
crystal, TTPA widths for the cases �> 0 and �< 0 are
different. This can be explained as follows. Although at the
center of the crystal signal and idler photons are generated
with the same frequencies, biphotons generated at the back
face are nondegenerate. Because of GVD, there is a delay
accumulated between the photons of a pair in the course of
its propagation through the crystal. At �> 0, this delay is

compensated by the one appearing due to birefringence
and at �< 0, both delays add up.
In conclusion, a biphoton whose spectrum is broadened

due to a linear aperiodicity of the crystal poling can be
compressed in time using normal GVD of an optical fiber.
To describe the compression, it is sufficient to take into
account first-order terms in the crystal dispersion depen-
dence and second-order terms in the fiber dispersion de-
pendence. Exact calculation shows that higher-order terms
reduce the compression but the effect is still present. It is
worth mentioning an interesting result: the two-photon
correlation time as well as its evolution due to the propa-
gation of the biphoton through an optical fiber strongly
depend on the position of the crystal.
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FIG. 5 (color online). TTPA width at the output of the fiber
versus the fiber length for �< 0 (red line) and �> 0 (grey
dashed line) calculated without neglecting higher-order GVD
terms.

FIG. 4. Second-order Glauber’s correlation function of the
biphoton with �< 0 (a),(c),(e) and �> 0 (b),(d),(f), after its
propagation through a fiber of length 8 cm (a),(b), 16.927 cm (c),
(d), 50 cm (e),(f).
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