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We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We

show that a hitherto discarded term in the conserved current is not only allowed by symmetries, but is in

fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of

new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new

kinetic coefficients can be expressed, in a unique fashion, through the anomaly coefficients and the

equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations,

including heavy-ion collisions.
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Introduction.—Relativistic hydrodynamics is important
for many questions in nuclear physics, astrophysics, and
cosmology. For example, hydrodynamic models are used
extensively for describing the evolution of the fireball
created in heavy-ion collisions. The relativistic hydrody-
namic equations were proposed many years ago [1,2]; such
equations describe the dynamics of an interacting relativ-
istic theory at large distance and time scales. The hydro-
dynamic variables are the local velocity u�ðxÞ (satisfying
u2 ¼ �1), the local temperature TðxÞ and chemical poten-
tial(s) �aðxÞ, where the index a numerates the conserved
charges. The hydrodynamic equations govern the time
evolution of these variables; they have the form of the
conservation laws @�T

�� ¼ 0, @�j
a� ¼ 0, supplemented

by the constitutive equations which express T�� and ja� in
terms of u�, T, and�a. These equations are the relativistic
generalization of the Navier-Stokes equations.

One feature of relativistic quantum field theory that does
not have a direct counterpart in nonrelativistic physics is
the presence of triangle anomalies [3,4]. For currents as-
sociated with global symmetries, the anomalies do not
destroy current conservations, but are reflected in the
three-point functions of the currents. When the theory is
put in external background gauge fields coupled to the
currents, some of the currents will no longer be conserved.

In this Letter, we show that the presence of quantum
triangle anomalies leads to an important modification of
the hydrodynamic equations. In other words, in a hot and
dense medium quantum anomalies are expressed macro-
scopically. This modification should be important in many
physical situations, including the quark gluon plasma
where the small masses of the u and d quarks can be
neglected.

In the simplest case when there is one U(1) current with
a Uð1Þ3 anomaly, the constitutive equation for the con-
served current j� must contain an additional term propor-
tional to the vorticity [5]

j� ¼ nu� � �Tðg�� þ u�u�Þ@�
�
�

T

�
þ �!�; (1)

!� ¼ 1

2
�����u�@�u�; (2)

where n is the charge density, � is the conductivity, and �
is the new kinetic coefficient.
Even in a parity-invariant theory, the vorticity-induced

current �!� is allowed by symmetries if, e.g., j� is a
chiral current. This term contains only one spatial deriva-
tive, and its effect is as important as those of viscosity or
diffusion. Before very recently, this term had been com-
pletely overlooked. In fact, if one follows the standard
textbook derivation [2], the new term seems to be disal-
lowed by the existence of an entropy current with mani-
festly positive divergence, required by the second law of
thermodynamics.
Recently, however, calculations using the techniques of

gauge/gravity duality [6–8] within a particular model
(N ¼ 4 super-Yang-Mills plasma with an R-charge den-
sity) give a nonzero value for � [9–11]. This indicates that
the problem with the entropy current must be circumvented
in some way.
In this Letter we show that this new term is not only

allowed, but is required by anomalies. Moreover, the
parity-odd kinetic coefficient � is completely determined
by the anomaly coefficient C, defined through the diver-
gence of the gauge-invariant current, @�j

� ¼
� 1

8C�
���	F��F�	, and the equation of state,

� ¼ C

�
�2 � 2

3

�3n

�þ P

�
; (3)

where � and P are the energy density and pressure. In the
case of multiple U(1) conserved currents, the formulas are
modified only slightly. Namely, Eq. (3) becomes
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�a ¼ Cabc�b�c � 2

3
naCbcd �

b�c�d

�þ P
; (4)

where a, b, c numerate the currents, Cabc is symmetric
under permutations of indices and is determined from the
anomalies, @�j

a� ¼ � 1
8C

abc����	Fb
��F

c
�	. Equations (3)

and (4) are the central results of this Letter.
The physical meaning of these new terms can be made

explicit by the following example. Consider a volume of
rotating quark matter, made of massless u and d quarks, at
baryon chemical potential �. For a moment let us neglect
instanton effects, so the Uð1ÞA current j

�
5 ¼ �q
�
5q is

conserved. Because of the triangle anomaly in the three-
point correlators of j�5 with two baryon currents, Eq. (4)

implies that axial current will flow along the axis of
rotation: hj�5 i ¼ 3

�2 !
�. This can be thought of as chiral

separation: left- and right-handed quarks move with
slightly different average momentum, creating an axial
current. Since this effect owes its existence to triangle
anomalies, we do not expect it to be present in nonrelativ-
istic normal fluids. Instead, in nonrelativistic fluids, chiral
separation appears in higher orders in derivative expansion
[12]. Analogously, in the presence of baryon and isospin
chemical potential, the axial isospin current �q
�
5�3q
flows along the rotation axis.

Entropy current in hydrodynamics with anomalies.—For
simplicity consider first a relativistic fluid with one con-
served charge, with a Uð1Þ3 anomaly. To constrain the
hydrodynamic equation, we turn on a slowly-varying back-
ground gauge field A� coupled to the current j�. We take

the strength of A� to be of the same order as the tempera-

ture and the chemical potential, so A� �Oðp0Þ and F�� �
OðpÞ. As in first-order hydrodynamics, we keep terms of
order OðpÞ in the constitutive equations for T�� and j� (or
terms of orderOðp2Þ in the equations of motion). Note that
A� is not dynamical.

In the presence of an external background field the
hydrodynamic equations obtain the form

@�T
�� ¼ F��j�; @�j

� ¼ CE�B�; (5)

where we have defined the electric and magnetic fields in
the fluid rest frame, E� ¼ F��u�, B

� ¼ 1
2 �

���	u�F�	.

The right-hand sides of these equations take into account
the fact that the external field performs work on the system,
and the anomaly. Note that the rate of change of energy/
momentum and particle number are OðpÞ or Oðp2Þ in our
power counting, so the assumption of local thermal equi-
librium is still valid.

The stress-energy tensor and the current are

T�� ¼ ð�þ PÞu�u� þ Pg�� þ ���; (6)

j� ¼ nu� þ ��; (7)

where ��� and �� are terms of order OðpÞ which incorpo-
rate, in particular, dissipative effects. Following Landau
and Lifshitz, we can always require u��

�� ¼ u��
� ¼ 0.

We find ��� and �� from the requirement of the existence
of an entropy current s� with non-negative derivative,
@�s

� � 0. Transforming u�@�T
�� þ�@�j

� using hydro-

dynamic equations and �þ P ¼ Tsþ�n, we find

@�

�
su� ��

T
��

�
¼ � 1

T
@�u��

�� � ��

�
@�

�

T
� E�

T

�

� C
�

T
EB: (8)

In the standard treatment when the current is not anoma-
lous, C ¼ 0, this equation is interpreted as the equation of
entropy production. The first-derivative parts of the energy
tensor and the current have the following form:

��� ¼ �P��P�	ð@�u	 þ @	u�Þ �
�
� � 2

3


�
P��@u;

(9)

�� ¼ ��TP��@�

�
�

T

�
þ �E�; (10)

where P�� ¼ g�� þ u�u�, and the entropy production
rate is manifestly positive. However, in the presence of
anomalies the last term in Eq. (8) can have either sign, and
can overwhelm the other terms. Therefore, the hydrody-
namic equations have to be modified.
The most general modification one can make is to add

the following terms to the U(1) and entropy currents,

�� ¼ ��TP��@�

�
�

T

�
þ �E� þ �!� þ �BB

�; (11)

s� ¼ su� ��

T
�� þD!� þDBB

�; (12)

where �, �B, D, and DB are functions of T and �. Now the
entropy production @�s

� is a sum of many terms, including

those containing !�, B�, or other structures involving the
Levi-Civita tensor. These terms are dangerous for the
second law of thermodynamics because they can have
either sign. In fact, it is possible to show that the require-
ment of positive entropy production cannot be satisfied for
all initial conditions unless these terms vanishes. Using the
following identities which follow from the ideal hydro-
dynamic equations,

@�!
� ¼ � 2

�þ P
!�ð@�P� nE�Þ; (13)

@�B
� ¼ �2!Eþ 1

�þ P
ð�B@Pþ nEBÞ; (14)

one finds that the following four equations have to be
satisfied:

@�D� 2
@�P

�þ P
D� �@�

�

T
¼ 0; (15)

@�DB � @�P

�þ P
DB � �B@�

�

T
¼ 0; (16)

2nD

�þ P
� 2DB þ �

T
¼ 0; (17)
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nDB

�þ P
þ �B

T
� C

�

T
¼ 0: (18)

To proceed further, we change variables from �, T to a
new pair of variables, �� � �=T and P. From dP ¼ sdT þ
nd�, it is easy to derive�

@T

@P

�
��
¼ T

�þ P
;

�
@T

@ ��

�
P
¼ � nT2

�þ P
: (19)

Writing @iD ¼ ð@D=@PÞ@iPþ ð@D=D ��Þ@i ��, and noting
that @iP and @i �� can be arbitrary, as they can be considered
as initial condition on a time slice, Eq. (15) becomes two
equations

� �þ @D

@ ��
¼ 0;

@D

@P
� 2

�þ P
D ¼ 0: (20)

Using Eq. (19), one finds that the most general solution to
Eq. (20) is

D ¼ T2dð ��Þ; � ¼ @

@ ��
½T2dð ��Þ�P; (21)

where dð ��Þ is, for now, an arbitrary function of one vari-
able. Equation (16) yields

DB ¼ TdBð ��Þ; �B ¼ @

@ ��
½TdBð ��Þ�P; (22)

where dBð ��Þ is another function of ��. From Eqs. (17) and
(18) we get

dBð ��Þ ¼ 1

2
d0ð ��Þ; d0Bð ��Þ � C �� ¼ 0; (23)

which can be integrated. We find

dBð ��Þ ¼ 1

2
C ��2; dð ��Þ ¼ 1

3
C ��3: (24)

So the new kinetic coefficients are

�¼ C

�
�2 � 2

3

n�3

�þP

�
; �B ¼ C

�
�� 1

2

n�2

�þP

�
: (25)

Extension to multiple charges.—It is easy to extend to
the case of many charges. Here we consider only the U(1)
charges that commute with each other. We denote the
anomaly coefficients as Cabc, which is totally symmetric
under permutation of indices and give the divergence of the
gauge-invariant currents,

@�j
a� ¼ CabcEbBc: (26)

The constitutive equation is now

ja� ¼ nau� þ � � � þ �a!� þ �ab
B B�; (27)

where �a and �ab
B are new transport coefficients. The

entropy current is now modified to

s� ¼ su� ��a

T
�a þD!� þDa

BB
a�: (28)

Repeating the calculations of the previous section, we find
that

D ¼ 1

3
CabcT2 ��a ��b ��c; Da

B ¼ 1

2
CabcT ��b ��c; (29)

�a ¼ @

@ ��a D

��������P
; �ab

B ¼ @

@ ��a D
b
B

��������P
; (30)

and, by using thermodynamic relations, one derives
Eq. (4).
Gravity calculation.—The discussion above has been

completely independent of details of the theory. We would
like to check our formulas for the case when the kinetic
coefficients can be calculated explicitly. In this Letter we
use a holographic model as a testing ground for our pre-
dictions. Namely, we look at the theory described by the
following 5D action,

S ¼ 1

16�G5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p �

Rþ 12� FABF
AB

þ 4�

3
�LABCDALFABFCD

�
: (31)

Here Latin indices A, B denote bulk 5D coordinates r, v, x,
y, z, and Greek indices �, � 2 fv; x; y; zg denote the
boundary coordinates (v play the role of time on the
boundary). The above action is a consistent truncation of
type IIB supergravity Lagrangian on AdS5 � S5 back-
ground with a cosmological constant � ¼ �6 and the

Chern-Simons parameter � ¼ �1=ð2 ffiffiffi
3

p Þ [13,14]. In this
case it describes N ¼ 4 supersymmetric Yang-Mills the-
ory at strong coupling, where the U(1) charge corresponds
to one particular subgroup of SO(6) internal symmetry. To
keep the discussion general we will keep the � coefficient
unfixed, and treat Eq. (31) as the definition of our theory.
The field equations corresponding to (31) are

GAB � 6gAB þ 2ðFACF
C
B þ 1

4
gABF

2Þ ¼ 0; (32)

rBF
BA þ ��ABCDEFBCFDE ¼ 0; (33)

where gAB is the 5D metric, GAB ¼ RAB � 1
2gABR is the

five dimensional Einstein tensor. The external gauge field
and the current in the boundary theory are associated with
the asymptotics of the A� near the boundary

A�ðr; xÞ ¼ A�ðxÞ � 2�G5

r2
j�ðxÞ: (34)

From Eq. (33) one derives the relationship between the
anomalies coefficient C and �,

C ¼ � 2

�G5

�: (35)

These equations admit an AdS Reissner-Nordström
black-brane solution. In Eddington-Finkelstein coordi-
nates, it is

ds2 ¼ 2dvdr� r2fðr; m; qÞdv2 þ r2d~x2; (36)

A ¼ �
ffiffiffi
3

p
q

2r2
dv; (37)
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where

fðr;m; qÞ ¼ 1� m

r4
þ q2

r6
: (38)

The black brane is dual to a fluid at finite temperature T and
chemical potential�. The connection between the parame-
ters of the metric and T and � is

m¼�4T4

24
ð
þ 1Þ3ð3
� 1Þ; 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2

3�2T2

s
; (39a)

q¼ 2�ffiffiffi
3

p �2T2

4
ð
þ 1Þ2: (39b)

The equation of state of this fluid is

PðT;�Þ ¼ mðT;�Þ
16�G5

: (40)

In order to find the hydrodynamic equations, we use the
method developed in Ref. [15]. We locally boost the
Reissner-Nordström metric and consider the boost velocity
u�, as well as the mass and charge of the black hole, as
slowly-varying function of the black-brane coordinates,

and also turn on a background gauge field A
bg
� . To zeroth

order, the background we obtain is

ds2 ¼ �2u�dx
�drþ r2ðP�� � fu�u�Þdx�dx�; (41)

A ¼
ffiffiffi
3

p
q0

2r2
u�dx

� þ A
bg
� dx�: (42)

By iteration we construct the corrections proportional to
first derivatives

gAB ¼ gð0ÞAB þ gð1ÞAB þ . . . ; AM ¼ Að0Þ
M þ Að1Þ

M þ . . . ;

(43)

requiring the solution to be regular at the horizon. The
solution is then expanded around the boundary; � and �B

are read from the asymptotics of A� near the boundary. As

the result, we find

� ¼ � 3q2�

2�G5m
; (44)

�B ¼ �
ffiffiffi
3

p ð3R4 þmÞq�
4�G5mR2

; (45)

where R is the radius of the horizon, R ¼ �
2 Tð
þ 1Þ. Both

� and �B originate from the Chern-Simons term in the 5D
action (31), as evident from the presence of � in their
expressions. Equation (44) is consistent with previous
results of Refs. [9,10], while Eq. (45) is a new result. It
is straightforward to check that the result coincides with
Eq. (25), computed using the equation of state (40) and the
relationships (39).

Conclusion.—In this Letter we show that the relativistic
hydrodynamic equations have to be modified in order to
take into account effects of anomalies. At nonzero chemi-
cal potentials, we find a new effect of vorticity-induced
current. Moreover, the kinetic coefficient characterizing
this effect is completely fixed by the anomalies and the
equations of state.
As evident from Eqs. (3) and (4), vorticity-induced

currents appear only in the presence of chemical potentials.
With no chemical potentials, vorticity does not induce
current at all. We expect that the anomalous terms will
play a role in noncentral heavy-ion collisions. One can
draw a parallel with the ‘‘chiral magnetic effect,’’ invoked
to explain fluctuations of charge asymmetry in noncentral
collisions [16,17]. They should also affect the hydrody-
namic behavior of a dense and hot neutrino gas, or of the
early Universe with a large lepton chemical potential.
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