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We present an efficient and robust method based on Monte Carlo simulations for predicting crystal
structures at finite temperature. We apply this method, which is surprisingly easy to implement, to a
variety of systems, demonstrating its effectiveness for hard, attractive, and anisotropic interactions, binary

mixtures, semi-long-range soft interactions, and truly long-range interactions where the truly long-range
interactions are treated using Ewald sums. In the case of binary hard-sphere mixtures, star polymers, and
binary Lennard-Jones mixtures, the crystal structures predicted by this algorithm are consistent with
literature, providing confidence in the method. Finally, we predict new crystal structures for hard
asymmetric dumbbell particles, bowl-like particles and hard oblate cylinders and present the phase
diagram for the oblate cylinders based on full free energy calculations.
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The ability of atomic, colloidal, and nanoparticle sys-
tems to self-organize into crystal structures makes the
prediction of stable crystal structures in these systems an
important challenge for science. In a recent Review article,
Woodley and Catlow claim “The prediction of structure at
the atomic level is one of the most fundamental challenges
in condensed matter science’ [1]. It is therefore not sur-
prising that the subject has received much attention from
the scientific community over the last several decades.

The question itself is deceivingly simple: assuming that
the underlying interactions between constituent particles
are known, which crystal structures are stable? Before the
1990s most of our understanding of atomic crystal struc-
tures came from simple empirical rules, now well docu-
mented in solid state text books. In 1990, Pannetier et. al.
proposed a method based on simulated annealing tech-
niques [2]. In their method a general crystal structure
was described in terms of lattice and basis vectors, and
the “cost” function for the system was minimized using
simulated annealing. The method can easily be extended to
any atomic system for which a suitable cost function, e.g.,
the potential energy, can be constructed [3]. Recently, more
advanced minimization techniques such as genetic algo-
rithms (GAs) (e.g., [4,5]) and Monte Carlo (MC) basin
hopping algorithms [6] have been applied. Typically these
techniques are used to locate the minimum potential en-
ergy of the system, and as such, probe the zero-temperature
phase behavior. However, for systems where the entropy
plays a significant role, these techniques break down. For
instance, new crystal structures can appear in the phase
diagram at finite temperature, which are different from the
zero-temperature crystal structures, and hence predicting
the zero-temperature structures will not be sufficient for
making predictions at finite temperature. Additionally, for
hard systems the potential energy is always zero as only
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nonoverlapping configurations contribute to the partition
function, and hence, crystal structures are stabilized by
entropy alone. For such systems it is difficult to construct
an appropriate cost function, and therefore the MC basin
hopping algorithm and GAs cannot be applied to hard-core
systems. With the recent progress in the chemical synthesis
and fabrication of colloidal particles and nanoparticles,
there is unprecedented ability to control the interparticle
interactions in such systems, through particle synthesis and
chemistry [7], through the solvent in which they are dis-
persed [8], and through the application of external fields
[9]. The resulting interactions between the colloidal parti-
cles can be made sufficiently weak that emerging crystal
structures are stabilized predominantly by entropic contri-
butions to the free energy. For instance, experimental
realizations of binary hard-sphere mixtures and hard
bowl-like particles as described in this Letter, are stabilized
purely by entropy. Additionally, crystal structures found in
binary mixtures of nanoparticles (e.g., NaCl, AIB,,
NaZn;3) are consistent with hard-sphere interactions, in-
dicating a significant entropic contribution to the free
energy of these systems [10]. Hence, locating stable crystal
structures for soft interactions at finite temperature and for
hard-core interactions presents an important and exciting
challenge and plays a vital role in the rational design of
advanced materials.

To the best of our knowledge, there have been only two
attempts to predict crystal structures for such systems, an
ergodicity search algorithm [11] and the Parrinello-
Rahman metadynamics method [12]. In the ergodicity
algorithm, the entropic contribution to the free energy is
approximated by the harmonic phonon contribution.
However, even such an approximation is difficult and
computationally expensive, and not straightforward to ap-
ply to hard-core interactions. In contrast, metadynamics
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uses a constant pressure molecular dynamics (MD) simu-
lation with variable box shape, to study phase transitions
between various crystal structures. In this case, the free
energy is intrinsically included in the model. We are,
however, unaware of any attempts to apply metadynamics
to predicting crystal structures out of the fluid phase.

In this Letter we present a novel method to predict
crystal structures at finite temperature for a wide variety
of systems, including hard-core systems whose phase be-
havior is purely entropy-driven such as binary sphere
mixtures, asymmetric dumbbells, bowls, and platelets.

The general algorithm consists of MC simulations in an
isotension-isothermal ensemble and is similar in spirit to
the Parrinello-Rahman metadynamics method [12].
However, there are a few important differences, described
in more detail below. First, we extend the Parrinello-
Rahman MD method which is based on the isotension
ensemble to MC simulations, for which the constant stress
condition is much easier to implement. Second, we apply
our method to predict crystal structures out of the fluid
phase. To this end, the initial pressure is chosen to be below
the fluid to solid transition and the pressure is increased
incrementally until the system solidifies. We note, how-
ever, that we can also use our method to study crystal
transformations similar to the metadynamics method
[12], which can serve as a stability check of a crystal
structure; e.g, the cuboctahedral AB 3 structure melts into
the isostructural AB,; structure, and the Ag,Se structure,
predicted in a GA, melts into the stable MgZn,. In our MC
simulations, lattice vectors L comprise the simulation box,
and the positions of the particles in the crystal; i.e., the
basis vectors 13, are expressed in terms of these lattice
vectors. As is typical for a MC simulation in the
isothermal-isobaric (NPT) ensemble, each MC step con-
sists of either a trial particle displacement or a trial volume
change where the acceptance rules of the particle and
volume moves are given by the Metropolis algorithm
[13]. In order to allow for box shape fluctuations, a trial
volume move involves an attempt to change the orientation
and the length of a random lattice vector. Third, an im-
portant novel part of our algorithm is to treat the simulation
box as a unit cell, and as such work with extremely small
particle numbers. In this Letter, the number of particles in
the simulation box ranges from 1-12. Working with small
simulation boxes, and allowing the shape of the simulation
box to fluctuate introduces new problems. The main prob-
lem is that while the system is in the liquid phase, the shape
of the box fluctuates significantly. Thus, the box can be-
come extremely distorted, which makes the potential en-
ergy summation time consuming. To avoid this problem,
we use the lattice reduction technique described in Ref. [5]
to redraw the unit cell when it becomes too distorted.
Additionally, we impose a restriction on all the angles
and the lengths of the lattice vectors to avoid trivial un-
physical crystal structures. Without these restrictions the
particles tend to line up in columns, such that the particles

only interact with their own periodic images in one of the
lattice directions resulting in unphysical contributions to
the entropy. Angles less than 30° and greater than 150° are
not accepted. Such a condition prevents the box (particu-
larly while in the fluid phase) from an extreme distortion,
while allowing for all possible crystal phases to emerge in
our simulations. Additionally, for each configuration of
interest, we run several parallel MC runs, with various
starting configurations and pressures.

We applied this method to several representative sys-
tems: binary hard-sphere mixtures, binary Lennard-Jones
mixtures, star polymers, dipolar hard spheres in an electric
field, asymmetric hard dumbbells, hard bowl-like particles,
and hard platelets.

In the case of binary hard-sphere mixtures, the initial
pressure was chosen such that the simulation started in the
fluid phase. The pressure was increased slowly until the
particles crystallized, and the crystal structure remained
constant. In order to facilitate the identification of the
crystal structure, the pressure was then increased signifi-
cantly. The results for AB and AB, crystal structures are
shown in Table I for varying size ratios « = og/o; with
o s the diameter of the large and small hard spheres,
respectively. The close packed structures for AB [14,15]
and AB, [14] stoichiometry have been predicted previ-
ously, using a GA [14] and a simulated annealing technique
using structures from a crystallographic database [15]. We
note that all the structures predicted in Refs. [14,15] are
also predicted by our algorithm. Additionally, the stability
of the AB and AB, structures has been determined in
computer simulations using free energy calculations.

TABLE I. AB and AB, structures predicted for binary hard-
sphere mixtures for various size ratio @ = og/o . Each simu-
lation was repeated between 10-20 times with different initial
configurations, and the frequency (%) of the resulting structures
is listed. * has been used to denote structures which are slightly
distorted from their symmetric structure. Structures which have
been previously predicted to be stable [16] are indicated in bold.
For a = 0.4 and 0.7, our method was unable to predict ordered
AB, crystal structures, which is consistent with the fact that no
AB, structures are stable for these size ratios.

@ Structure AB (2:2) % Structure AB, (4:8) %

0.4 NaCl 40%
NiAs 20%
SG 166" 30%
0.5 SG 166 60% AlB, 55%
CrB 30%
0.6 CrB 70% AlB, 40%
SG 166 10%
SG 12 10%
0.7 CsCl 40%
CrB 20%
0.8 yCuTi 30% Laves 75%
alrV 10% SG139 5%
CsCl 10%

188302-2



PRL 103, 188302 (2009)

PHYSICAL REVIEW LETTERS

week ending
30 OCTOBER 2009

These studies show that NaCl is stable for « €
[0.2 — 0.42], AIB, for a € [0.42 — 0.59], and the Laves
phases are stable for o € [0.74 — 0.84] [16]. We indeed
observe from Table I that the stable crystal structures,
which are denoted in bold, are indeed predicted by our
new method.

For a = 0.5 we see that the most frequently occurring
AB crystal structure is not the best packed structure CrB,
but rather a crystal structure within the symmetry group
166 (denoted SG 166). A cartoon of this structure along
with AlB, is shown in Fig. 1. While AIB, is stable for o =
0.5, no AB stoichiometry crystal structure is found to be
stable. An examination of SG 166 shows that while it has a
different stoichiometry than AlB,, it has similar planes,
i.e., the small colloids sit on a 2D honeycomb lattice, while
the larger colloids are in hexagonal planes. Thus it appears
that while the system was unable to find the structure with
the lowest free energy since the stoichiometry was incor-
rect, it located a compromise.

The crystal structures appearing at & = (0.8 are also of
significant interest. At this size ratio the Laves phases are
expected to be stable. Our results show that a significant
majority of our simulations have resulted in Laves phases
(75%). It is interesting to note that we have been able to
improve the results for this size ratio dramatically by
restricting the length of the lattice vectors. When this
restriction is removed, we only find 30% resulting in the
Laves phases. Additionally, for all «, the runs with 12
particles per unit cell do not produce crystal structures
when this restriction is removed. Summarizing, we find
that our method predicts the stable crystal structures for
binary hard-sphere mixtures, including a few additional
structures which are the best packed crystal structures for
the given stoichiometry, and structures whose planes were
related to stable crystal structures.

‘ '

C)*)‘
FIG. 1 (color online). (a) and (b) correspond, respectively, to
the xy and xz faces of the AB crystal structure from Space Group
166 found in the set of predicted phases for size ratios 0.4-0.6.
(c) and (d) correspond to the xy and xz phases of the AIB, crystal
structure. Note that the planes made by the small particles in

both structures correspond to 2D honeycomb planes, while the
large colloids sit on a hexagonal lattice.

A recent MD simulation demonstrated that the
Wahnstrom binary Lennard-Jones mixture, which has
often been used in simulations to study glassy behavior,
crystallizes spontaneously into the MgZn, Laves phase
[17]. The Lennard-Jones interaction is given by u(r;;) =
4e;[(0;/ri)'* — (04;/r;j)°], where the Lorentz-Berthelot
mixing rule o4 = (044 + 0pp)/2 was used. Choosing
the parameter € 4 = € = €45 = 1, and opg/oss =
0.8 —0.84, we have also located predominantly the
MgCu, and MgZn, Laves phases, which is consistent
with Ref. [17]. We also applied the method to study star
polymers [18], which interact with an extremely soft in-
teraction without a hard core. The interaction between star
polymers is characterized by the arm number f and the
corona diameter o. For this system, we only allowed the
shape of the box to fluctuate and studied the system at fixed
density. We predicted the crystal structures appearing for
f =64 and o = 1 as a function of the density. We ob-
served that a single MC simulation at constant density
visited a large range of (meta)stable crystal structures. In
this case, for each run we saved the crystal structures with
the lowest potential energy, i.e., face-centered cubic (fcc),
trigonal, diamond, hexagonal, and hexagonal-close-packed
(hep) crystal structures upon increasing density which all
agree with Ref. [5]. We also implement box shape moves in
a system with long-range interactions treated using Ewald
sums, i.e., a system of dipolar hard spheres in an electric
field. The interaction potential is given by Bu(r) =
(y/2)(a/r)’[1 — 3cos(6)] with y = 15. The phase be-
havior of this system has been studied previously [19],
and the three known stable crystal structures are the body-
centered-tetragonal (bct), fcc, and hep phase. The crystal
phases predicted by our algorithm included bct, fcc, and
hcp phases and are consistent with previous phase diagram
calculations [19], thereby demonstrating that our method
can be applied to systems with long-range interactions.

Having established the reliability of our method as all
the predicted structures are consistent with the literature,
we now apply the algorithm to previously unexplored
systems such as hard asymmetric dumbbells, hard bowl-
like particles and hard platelets. In the case of asymmetric
dumbbell particles consisting of a tangent large and small
hard sphere, our method predicts crystal structures that are
atomic analogs of NaCl, CsCl, yCuTi, CrB, and aIrV
when we regard the two individual spheres of each dumb-
bell independently. The bonds that connect the dumbbells
appear to connect random small-large pairs, and hence the
crystal structures are in fact aperiodic in positional and
orientational order. These results are consistent with the
structures found for the AB structures of the binary hard-
sphere mixtures. The bowl-like particles are modeled by
the solid of rotation of a crescent, where the thickness of
the crescent is denoted by D, the diameter by o, and the
axis of rotation is defined as u. To predict the crystal
structures, unit cells of 2 to 6 particles were examined.
The system was initialized at a pressure of Bpo> = 10 and
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FIG. 2 (color online).
for hard bowls.

IX

Cartoon and predicted crystal structures

was increased by a factor of 10 each step until a pressure of
Bpo? = 10° was reached. The resulting structures are
shown in Fig. 2. Subsequent free energy calculations
showed that four of the six predicted crystal structures
are indeed stable: IB, IX’, IX and fcc? [20]. Finally, we
apply this method to hard cusp-free platelets [21], which
we model by oblate spherocylinders [see Fig. 3(a)]. Our
method finds the two crystal phases, Xijeq and Xyjigneds
depicted in Fig. 3. The particles are tilted in the Xijeq
phase with respect to each other. Surprisingly, no crystal
analog exists for cut spheres [22], which is the more
conventional model for platelets. Xz 1s the crystal
phase also found for cut spheres, where all particles point
in the same direction. The phase diagram for this system is
presented in Fig. 3. Interestingly, both predicted crystal
structures are stable in some region of the phase dia-
gram, specifically, Xjeq for L/D < 0.46 and X,jigneq for
larger L/D. We note that this phase diagram is based on
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FIG. 3 (color online). Phase diagram of hard oblate spherocy-
linders in the packing fraction (¢) versus dimensionless thick-
ness (L/D) representation (d), where the diameter D and
thickness L are depicted in (a). The state points in the dark
gray area are inaccessible since they lie above the maximum
close packing line. Xgjigneq and Xijjeq, denote the aligned and
tilted crystal structures as shown in (b) and (c), “iso,” “nem,”
and “col” are the isotropic, nematic, and the columnar phase,
respectively. The lines are a guide to the eye. The coexistence
packing fractions of the nematic and the columnar phase for
L/D = 0 are from Ref. [24].

full free energy calculations, which will be explained else-
where [23].

In conclusion, we have presented an algorithm to predict
the crystal structures at finite temperature for a wide vari-
ety of systems. In all cases our algorithm has predicted the
stable crystal structures, along with a small number of
additional phases. The algorithm is extremely simple to
implement, and yields results consistent with the known
phase behavior. We expect this algorithm to be widely
applicable in the study of new materials, such as colloidal
particles, nanoparticles, and micelles.
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