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We introduce a previously unknown spin-related transport phenomenon, consisting of a transformation

(swapping) of spin currents, in which the spin direction and the direction of flow are interchanged.

Swapping is due to the spin-orbit interaction in scattering. It originates from the correlation between the

spin rotation and the scattering angle. This effect is more robust than the skew scattering, since it exists

already in the first Born approximation. Swapping may lead to the spin accumulation with spin

polarization perpendicular to the surface, unlike what happens in the spin Hall effect.
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Spin-orbit interaction leads to the mutual transforma-
tions of spin and charge currents [1–3]: the charge current
generates the transverse spin current and vice versa. The
family of these phenomena includes the anomalous Hall
effect in ferromagnets [4–6] and the direct and inverse spin
Hall effect [1,2]. After the first experimental observations
[7,8], the spin Hall effect in semiconductors and metals
attracted much interest and became the subject of numer-
ous experimental and theoretical studies [3]. Most of the
theoretical work is devoted to the intrinsic (not related
to electron scattering) mechanism of spin-charge cou-
pling [9,10], which was first proposed by Karplus and
Luttinger [6].

In this Letter, we introduce another transport phenome-
non belonging to the same family. We will show that
because of spin-orbit interaction, a given spin current in-
duces not only the charge current, but also a transverse spin
current with interchanged spin direction and the direction
of flow. We will refer to this transformation as the swap-
ping of spin currents.

The notion of spin current was introduced in Ref. [1]. It
is described by a tensor qij where the first index indicates

the direction of flow and the second one shows which
component of spin is flowing. Following [3,11], we write
down the phenomenological equations describing the cou-
pling between spin and charge currents, qij and qi (more

accurately, q is the electron flow density, related to the
electric current density j by q ¼ �j=e, where e is the
elementary charge). We consider an isotropic material with
inversion symmetry. Then, we have [11]

qi ¼ qð0Þi þ �"ijkq
ð0Þ
jk ; (1)

qij ¼ qð0Þij � �"ijkq
ð0Þ
k ; (2)

where qð0Þi and qð0Þij are the primary currents, which may

exist in the absence of spin-orbit interaction, "ijk is the unit

antisymmetric tensor, and � is a dimensionless parameter
proportional to the strength of spin-orbit interaction.

Pure symmetry considerations allow for additional terms

in Eq. (2) proportional to qð0Þji and �ijq
ð0Þ
kk , which describe

transformations of spin currents. In the presence of elect-
ric field E and spin polarization P, this would result in
additional contributions to qij proportional to EjPi and

�ijðE � PÞ, which were mentioned already in [1,2].

However, the physical origin of these contributions was
not understood at the time and the effect was not studied
ever since.
We will show that the additional terms should always

enter in a combination qð0Þji � �ijq
ð0Þ
kk so that Eq. (2) should

be modified as

qij ¼ qð0Þij � �"ijkq
ð0Þ
k þ ßðqð0Þji � �ijq

ð0Þ
kk Þ; (3)

with a new dimensionless parameter ß [12]. We will also
show that the resulting swapping of spin currents originates
from the correlation between the scattering direction and
spin rotation during collisions. This effect is more robust
than the spin-charge coupling: the swapping constant ß
exists already in the Born approximation, while � appears
only beyond this approximation.
The physical origin of the swapping effect can be readily

seen from Fig. 1 illustrating the spin-dependent scattering.
The most important element is the magnetic field B exist-

FIG. 1. Schematics of electron scattering by a negative charge.
The electron spin sees a magnetic field B� v�E perpendicu-
lar to the trajectory plane. Note that the magnetic field (and
hence the sense of the spin rotation) has opposite directions for
electrons scattered to the left and to the right.
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ing in the electron’s moving frame and seen by the electron
spin. This field is perpendicular to the plane of the electron
trajectory and has opposite signs for electrons moving to
the right and to the left of the charged center. The Zeeman
energy of the electron spin in this field is, in fact, the spin-
orbit interaction.

Three spin-dependent effects can be seen: (1) The pre-
cession of the electron spin around B during the collision,
leading to the Elliott-Yafet spin relaxation. (2) The spin
asymmetry in scattering (the Mott effect, or skew scatter-
ing) resulting from the additional force proportional to the
gradient of electron Zeeman energy. (3) The correlation
between the directions of electron spin precession and
scattering. Indeed, one can see that while the spin on the
left trajectory is rotated clockwise, the spin on the right
trajectory is rotated counterclockwise. This correlation and
its consequences for spin transport were not discussed
previously. We will now see that this correlation leads to
a transformation of spin currents.

Suppose that the incoming electrons move in the y

direction and are polarized along y (spin current qð0Þyy ).
The electrons scattered to the left (right) will acquire a
small positive (negative) projection of spin on the x axis.

This means that the initial qð0Þyy spin current is partly trans-
formed to �qxx. For the case when incoming (along y)
electrons are polarized along x, a similar reasoning shows

that the initial spin current qð0Þyx will give rise to qxy. Thus, in

the latter case, the spin direction and the direction of flow
are interchanged. Summarizing, one can derive the spin

current transformation law: qð0Þji � �ijq
ð0Þ
kk ! qij, as ex-

pressed by Eq. (3).

The reason why the terms qð0Þji and �ijq
ð0Þ
kk enter in such a

combination can be explained as follows. Since the spin-
orbit interaction is weak, the transformed currents are
small compared to the primary currents. Suppose that the

primary current contains only one component, say qð0Þxx . In
the first order in spin-orbit interaction, there should be no
correction to this component. (Similarly, when a vector a is
rotated on a small angle, the first order correction �a is

perpendicular to a.) The combination qð0Þji � �ijq
ð0Þ
kk is the

only one to meet this requirement. Generally, the terms qð0Þji

and ��ijq
ð0Þ
kk enter with coefficients whose difference is

second order in spin-orbit interaction.
We now proceed with the formal derivation of Eqs. (1)

and (3). Introduce the spin density matrix ���ðpÞ, where �
and � are spin indices, p is the electron momentum. For a
given energy, the evolution of ��� due to elastic collisions

is described by the following equation [3,13]:

d���ðpÞ
dt

¼
Z

d�0
�
W��

�0�0��0�0 ðp0Þ

� 1

2

�
W��0

�0�0��0�ðpÞ þW�0�
�0�0���0 ðpÞ

��
; (4)

where the integration is done over the angles of p0 and

W��
�0�0 ¼ NvF�p

�0p0 ðF�p
�0p0 Þ�: (5)

Here, N is the impurity concentration, v ¼ p=m is the
electron velocity, and F�p

�0p0 is the scattering amplitude

relating the initial state (�0p0) and the final state (�p):

F�p
�0p0 ¼ Að#Þ���0 þ Bð#Þn � ���0 ; (6)

# is a scattering angle, � is the Pauli matrix vector, and n
is the unit vector perpendicular to the scattering plane n ¼
p0 � p=jp0 � pj.
The second term in the Eq. (6) originates from the spin-

orbit interaction HSO ¼ �ðk� rUÞ � �, where k ¼ p=@,
UðrÞ is the scattering potential and � is the spin-orbit
constant.
In the absence of spin-orbit interaction, Bð#Þ ¼ 0 and

W��
�0�0 ¼ NvjAð#Þj2���0���0 . Then, Eq. (4) reduces to the

conventional Boltzmann equation with the differential
cross section given by jAð#Þj2.
Equation (4) is applicable when the orbital motion can

be considered classically [14]. It was previously used to
study depolarization during atomic collisions [15] and the
spin-charge coupling for J ¼ 3=2 holes in the valence band
as well as for the carriers in a gapless semiconductor [16],
see also [17].
It is convenient to present ��� in the form

���ðpÞ ¼ 1

2
½fðpÞ��� þ P ðpÞ � ����; (7)

where fðpÞ ¼ Trð�̂Þ and P ðpÞ ¼ Trð�̂ �̂Þ are the particle
and spin polarization distributions, respectively.
From Eq. (4), we obtain a system of coupled kinetic

equations for fðpÞ and P ðpÞ:
dfðpÞ
dt

¼ Nv
Z

d�0f�1½fðp0Þ � fðpÞ� þ �2n � P ðp0Þg;
(8)

dP ðpÞ
dt

¼Nv
Z
d�0f�1½P ðp0Þ�P ðpÞ�þ�2nfðp0Þ

þ�3n�P ðp0Þþ�4n�½n�P ðp0Þ�g; (9)

where we have introduced four scattering cross sections

�1ð#Þ ¼ jAj2 þ jBj2; �2ð#Þ ¼ 2ReðAB�Þ;
�3ð#Þ ¼ 2ImðAB�Þ; �4ð#Þ ¼ 2jBj2: (10)

As we will see, they have the following physical meaning.
The usual transport cross section is determined by �1,
containing a correction jBj2, which is second order in
spin-orbit interaction. The spin-charge coupling, described
by the parameter � in Eqs. (1) and (3), is related to �2

(skew scattering cross section). The cross section �3 is
responsible for the swapping of spin currents. Finally, �4

determines the Elliott-Yafet spin-relaxation rate. These
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cross sections were, in fact, introduced by Mott and
Massey [18] to describe the depolarization of an electron
beam in a single scattering event.

We note that in the Born approximation the amplitudes
Að#Þ and Bð#Þ have a phase difference �=2. Thus, in this
approximation, �2 ¼ 0; however, the swapping cross sec-
tion �3 is nonzero.

Because of the rotational invariance of Eqs. (8) and (9),
the system of these integral equations can be exactly solved
for arbitrary initial distributions f0ðpÞ and P 0ðpÞ [15,16].
We will derive the coupled equations for the first moments
of f and P defined as

Qi ¼
Z d�

4�
vifðpÞ; Qij ¼

Z d�

4�
viP jðpÞ: (11)

The charge and spin currents are given by

qi ¼
Z

d3pQiðpÞ; qij ¼
Z

d3pQijðpÞ: (12)

We multiply Eqs. (8) and (9) by vi and integrate over the
angles of p. The integrals over d� in the right-hand sides
can be easily evaluated. The result reads [19]

	p
dQi

dt
¼ �Qi þ �"ijkQjk; (13)

	p
dQij

dt
¼ �Qij � �"ijkQk þ ßðQji � �ijQkkÞ: (14)

Here, the momentum relaxation time 	p ¼ ðNv�trÞ�1 is

expressed in the usual way through the transport cross
section �tr

�tr ¼
Z

d��1ð#Þð1� cos#Þ: (15)

The parameters �, ß, and the Elliott-Yafet spin-relaxation
time 	s are given by

� ¼ � 1

2�tr

Z
d��2ð#Þ sin#; (16)

ß ¼ � 1

2�tr

Z
d��3ð#Þ sin#; (17)

1

	s
¼ 2

3
Nv

Z
d��4ð#Þ: (18)

Introducing the averaged over angles of p spin polarization
Pð"Þ, in a similar way we obtain

dPð"Þ
dt

¼ �Pð"Þ
	s

: (19)

For a given energy " ¼ p2=2m, Eqs. (13), (14), and (19)
describe the decay of the charge and spin currents and the
spin polarization due to elastic collisions.

We are interested in the stationary solutions of Eqs. (13)
and (14) in the presence of external driving forces, for

example, in the presence of an electric field. The right-
hand sides of these equations will acquire additional terms

Qð0Þ
i and Qð0Þ

ij , which are proportional to the derivative

df0=d", where f0ð"Þ is the equilibrium distribution func-
tion. For degenerate electrons, df0=d" / �ð"� EFÞ,
where EF is the Fermi energy. Integrating the stationary
solutions of Eqs. (13) and (14) over p, we finally derive
Eqs. (1) and (3), where the parameters � and ß are taken at
the Fermi energy. We note that Eqs. (1) and (3) [but not
Eqs. (13) and (14)] are valid only in the first order in spin-
orbit interaction [12]. For nondegenerate electrons, the
expression (17) should be modified as

ß ¼ � N

2h	pi
�
v	2p

Z
�3 sin#d�

�
; (20)

where h. . .i means averaging over the electron energy with
the equilibrium distribution function.
We will now calculate the swapping parameter ß for the

Coulomb scattering in the Born approximation. For a
positively charged center, the scattering amplitudes are

Að#Þ ¼ �½2aBk2sin2ð#=2Þ��1;

Bð#Þ ¼ �i�k2 sinð#ÞAð#Þ; (21)

where aB ¼ @
2
=me2 is the Bohr radius, 
,m, and e are the

dielectric constant, electron effective mass, and charge,
respectively. Using Eqs. (10), (17), and (21), we obtain

ß ¼ 2�k2: (22)

In semiconductors with the band structure of GaAs, in the
limit of small effective mass, the Kane model gives [20]
� ¼ @

2=4mEg for� � Eg and � ¼ ð@2=3mEgÞð�=EgÞ for
� � Eg, where Eg is the band gap and � is the spin-orbit

splitting of the valence band. Hence,

ß ¼ EF

Eg

for � � Eg; (23)

ß ¼ 4

3

EF

Eg

�

Eg

for � � Eg: (24)

For a bulk electron concentration of 1017 cm�3, we
calculate a quite large value ß ¼ 0:3 for InSb [Eq. (23)]
and ß ¼ 0:003 for GaAs [Eq. (24)].
To observe the swapping effect, one should obviously

have a primary spin current. Most easily, this is achieved
by passing an electric current through a ferromagnet.
However, the strong exchange magnetic field will tend to
destroy spin currents with polarization different from that
of the majority spins. Whether the swapping effect in
ferromagnets can produce a measurable effect, or not, is
an interesting question, which we do not address here.
A possible way to see the swapping effect in semicon-

ductors, where the exchange field is negligible, is presented

in Fig. 2. The primary spin current qð0Þyy is produced by spin
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injection in a semiconductor 3D sample through a ferro-
magnetic contact. Swapping will result in the appearance

of transverse spin currents qxx ¼ qzz ¼ �ßqð0Þyy . Those
secondary currents will lead to an excess spin polarization
near the lateral boundaries of the semiconductor sample,
which could be detected by optical means. At the top face,
there will be a polarization Pz < 0 and at the bottom face
Pz > 0. (Similarly, Px < 0 at the front face and Px > 0 at
the back face.) The accumulation of spins polarized per-
pendicular to the surface distinguishes this manifestation
of swapping from the spin Hall effect, where the accumu-
lated spins are parallel to the surface.

It seems plausible that not only the scattering mecha-
nism considered here, but any mechanism leading to the
spin Hall effect, will also give rise to the swapping phe-
nomenon. However, for the moment, we do not see how
this could happen due to the ‘‘intrinsic’’ mechanism [9,10].
This problem should be addressed in future work.

In summary, we have considered a new phenomenon
caused by spin-orbit interaction and consisting in swapping

of spin currents. This effect originates from the correlation
between the spin rotation and the direction of scattering.
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FIG. 2 (color online). Schematics of a proposed experiment

revealing the swapping of spin currents. (a) The qð0Þyy spin current
is electrically injected in a semiconductor (S) through a ferro-
magnetic contact (F) with a magnetization along the y axis. The
wavy arrow symbolizes optical detection of the z component of
spin polarization near the surface. (b) The swapping effect

transforms the primary spin current qð0Þyy into qxx and qzz. This
should lead to the appearance of excess spin polarization at the
lateral boundaries of the sample (Pz < 0 at the top face and Pz >
0 on the bottom one). This polarization may be detected opti-
cally.
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