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K.B. Efetov,1 C. Pépin,2 and H. Meier1

1Theoretische Physik III, Ruhr-Universität Bochum, 44780 Bochum, Germany
2IPhT, CEA-Saclay, L’Orme des Merisiers, 91191 Gif-sur-Yvette, France

(Received 19 July 2009; published 26 October 2009)

We present an exact mapping of models of interacting fermions onto boson models. The bosons

correspond to collective excitations in the initial fermionic models. This bosonization is applicable in any

dimension and for any interaction between fermions. Introducing superfields, we derive a field theory that

may serve as a new way of analytical study. We show schematically how the mapping can be used for

Monte Carlo calculations and argue that it should be free from the sign problem.
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The study of interacting fermionic systems in cases
when the Landau Fermi liquid theory fails to describe all
interesting effects is an open problem of condensed matter
theory. Very often conventional methods [1] are not effi-
cient due to divergencies in perturbation expansions lead-
ing to the resummation of complicated series.

It is difficult to list here all the problems encountered in
the study of, e.g., strongly correlated systems. The most
clear examples are provided by one dimensional (1D)
systems where perturbative methods are especially incon-
venient but models suggested for describing high Tc super-
conductivity, see, e.g. [2], are not simpler. Generically, the
low temperature physics of systems of interacting fermions
is naturally described in terms of bosonic collective ex-
citations that can be expressed only by an infinite series of
conventional diagrams.

The numerical study of fermionic systems encounters
difficulties as well. The powerful Monte Carlo (MC)
method suffers the well-known sign problem [3–7] leading
to a drastic increase in the computing time.

All these examples call for a reformulation of interacting
fermions in terms of a boson model. Such an approach,
called bosonization (see, e.g., [8,9]), is well known and
successful for 1D fermionic systems. Attempts to bosonize
fermionic models in the dimensionality d > 1 have been
undertaken in the past, starting from the works [10,11]
followed by [12]. These schemes, however, have problems
when dealing with large momentum transfer by the inter-
action [13]. They reproduce the random phase approxima-
tion (RPA) but do not reach beyond.

A more general low energy bosonization scheme sug-
gested recently [14] is based on quasiclassical equations
and takes into account large momentum transfer. New
logarithmic contributions to anomalous dependence of
the specific heat [14] and spin susceptibility [15] were
found. However, working well for d ¼ 1 the scheme of
Ref. [14] is not completely accurate for d > 1 missing
some effects of the Fermi surface curvature [16].

All the previous bosonization methods are not exact;
hence they cannot be used for accurate numerical studies of
the initial fermionic problem.

In this Letter, we present a new scheme that allows one
to map interacting fermions to interacting bosons exactly.
This mapping works in any dimension at any temperature.
The effective model obtained describes interacting bosonic
excitations. It can be written either in a form of a model of
noninteracting bosons in a Hubbard-Stratonovich (HS)
field with a subsequent integration over this field or in a
form of a field theory containing superfields with quartic
and cubic interactions. The former may be convenient for
MC study, while the latter promises to be good for analyti-
cal investigations.
We start with a general model of interacting electrons

described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Ĥint; (1)

where Ĥ0 is the bare part,

Ĥ 0 ¼ � X
r;r0;�

tr;r0c
þ
r�cr0� ��

X
r;�

cþr�cr�; (2)

and Ĥint stands for an electron-electron interaction,

Ĥ int ¼ 1

2

X
r;r0�;�0

Vr;r0c
þ
r�c

þ
r0�0cr0�0cr�: (3)

In Eqs. (1)–(3) cr� (cþr�) are annihilation (creation) opera-
tors of the electrons on a lattice site r with spin � ¼ �.
The function tr;r0 describes the tunneling from the site r to
the site r0, Vr;r0 is the electron-electron interaction between

the r and r0 and � is the chemical potential.
The scheme of the bosonization suggested here can be

developed for arbitrary functions trr0 and Vrr0 in an arbi-
trary dimension. However, in order to make formulas more
compact we assume that

Vr;r0 ¼ �r;r0V0; V0 > 0; (4)

which corresponds to an on site repulsion.

Then, the term Ĥint can be rewritten in the form

Ĥ ð0Þ
int ¼ �V0

2

X
r

ðcþr;þcr;þ � cþr;�cr;�Þ2 (5)
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while replacing the chemical potential � by �0 ¼ ��
V0=2.

In this Letter, we concentrate on studying thermodynam-
ics and calculate the partition function

Z ¼ Tr expð��ĤÞ; � ¼ 1=T: (6)

As Ĥ0 and Hð0Þ
int do not commute we subdivide the interval

(0, �) into slices of the length � ¼ �=N � � and write Z
as a time ordered product over the imaginary time �.
Following a standard route of the HS transformation we

decouple the interaction term Ĥð0Þ
int integrating over a peri-

odic real field �rð�Þ ¼ �rð�þ �Þ and come to

Z¼ lim
�!0

Z
Z½��exp

�
� �

2V0

X
r

XN
l¼1

�2
r;l

�
D�;

Z½��¼Tr

�
exp

�
�Ĥ0

T

�YN
l¼1

exp

�
�
X
r;�

��r;l �cr;�;lcr;�;l

��
;

(7)

cr;�;l and �cr;�;l are the annihilation and creation operators

in the interaction representation [1] taken at �l ¼
ðl� 1=2Þ�, D� is the normalized product of all differ-
entials d�r;l and �r;l ¼ �rð�lÞ. The product in Z½�� is

ordered in time, such that l ¼ 1 is on the right.
For the analytical study, we could write Eq. (7) explicitly

in the continuous limit � ! 0 using integrals and time
ordering operators T�. However, MC calculations imply

finite � with typical values of �r;l growing as ��1=2 for

� ! 0 and therefore, we keep finite �.
Calculation of the trace over the fermionic operators in

Eq. (7) is not simple for finite � and one should approxi-
mate Z½�� by a more convenient expression. A standard
approximation Zf½�� used in MC simulations instead of

Z½��, Eq. (7), reads [3,6]

Zf½�� ¼ det
r;�

"
1þYN

l¼1

expð�ĥ½�ð�lÞ��Þ
#
;

ĥr;�½�ð�Þ� ¼ "̂r ��0 � ��rð�Þ
(8)

where "̂rfr � �P
r0tr;r0fr0 for an arbitrary function fr.

We suggest here another approximation Zb½�� to Z½��
that is more suitable for the bosonization,

Zb½�� ¼ Tr

�
exp

�
� Ĥ0

T

�
T�

� exp

�X
r;�

Z �

0
� ~�rð�Þ �cr;�ð�Þcr;�ð�Þd�

��
;

~�rð�Þ ¼ �r;l for ðl� 1Þ� � � < l�:

(9)

The functional Zb½��, Eq. (9), differs from Z½��, Eq. (7),
by integration of the operator �cr;�ð�Þcr;�ð�Þ over each slice
instead of taking it in the middle of the slice and multi-
plying by �. Therefore, the difference between Zb½�� and
Z½�� should vanish in the limit � ! 0. The functional
Zb½��, Eq. (9), has a form of the exact partition function

for an electron in an external (generally, discontinuous in

time) field ~�rð�Þ and we can use standard transformations.
In order to reduce the fermionic model, Eq. (9), to a

bosonic one, we introduce as in Ref. [14] an additional
variable 0 � u � 1 and write the function Zb½�� as

Zb½�� ¼ Z0 exp

�X
r;�

Z �

0

Z 1

0
� ~�rð�ÞGðu�Þ

r;r;�ð�; �þ 0Þdud�
�

where Z0 is the partition function of the ideal Fermi gas

and Gðu�Þ
r;r0;�ð�; �0Þ is a fermionic Green function,�

� @

@�
� ĥr;�½u ~�ð�Þ�

�
Gðu�Þ

r;r0;�ð�;�0Þ¼�r;r0�ð���0Þ; (10)

with the boundary conditions

Gðu�Þ
r;r0;�ð�; �0Þ ¼ �Gðu�Þ

r;r0;�ð�þ �; �0Þ ¼ �Gðu�Þ
r;r0;�ð�; �0 þ �Þ:

We develop our bosonization scheme introducing

Ar;r0 ðzÞ ¼ Gð0Þ
r;r0 ð�; �þ 0Þ �Gðu�Þ

r;r0;�ð�; �þ 0Þ; (11)

where z ¼ ð�; �; uÞ and Gð0Þ
r;r0 ð�; �0Þ is the bare electron

Green function. The function Ar;r0 ð�Þ is periodic, Ar;r0 ð�Þ ¼
Ar;r0 ð�þ �Þ, and, hence, describes bosons.
We rewrite the partition function Z½�� as

Zb½��¼Z0 exp

�
�X

r;�

Z �

0

Z 1

0
� ~�rð�ÞAr;rðzÞdud�

�
; (12)

and derive a closed equation for Ar;r0 ðzÞ. For that purpose
we write a conjugated equation�

@

@�0
� ĥr0;�½u ~�ð�0Þ�

�
Gðu�Þ

r;r0;�ð�; �0Þ ¼ �r;r0�ð�� �0Þ

and subtract it from Eq. (10) putting in the resulting
equation �0 ¼ �þ 0. The same can be done for the bare

Green function Gð0Þ
r;r0;�ð�; �0Þ and finally we obtain

@

@�
Ar;r0 ðzÞþH r;r0 ðzÞAr;r0 ðzÞ¼�u� ~�r;r0 ð�Þnr;r0 ;

H r;r0 ðzÞ¼ "̂r� "̂r0 �u� ~�r;r0 ð�Þ;
~�r;r0 ð�Þ¼ ~�rð�Þ� ~�r0 ð�Þ: (13)

The function nr;r0 ¼ Gð0Þ
r;r0 ð�; �þ 0Þ in Eq. (13) is the

Fourier transform in r� r0 of the Fermi distribution.
Equation (13) should be supplemented by the conditionX

r

Ar;rðzÞ ¼ 0: (14)

Equation (14) can be obtained noticing that
P

rAr;rðzÞ
is a constant independent of �rð�Þ, which follows from
Eq. (13). Assuming that the interaction and, hence, �rð�Þ
vanishes at infinity we come to Eq. (14).
So, we are to solve the linear equation (13) for Ar;r0 ðzÞ

with the condition (14), substitute the solution into Eq. (12)
and then into the first equation (7). A possible strong
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discontinuity of the function ~� does not lead to any prob-
lems in the limit � ! 0. Our scheme is similar to that of
Ref. [14] developed in the quasiclassical approximation
but now all the transformations are exact.

It is convenient to exactly integrate over the field �rð�Þ
in the beginning and thus derive a field theory for interact-
ing bosons. In Ref. [14] this goal has been achieved by
integrating over 48-component supervectors, which has led
to a rather cumbersome Lagrangian. Now we use another
trick, known as the Becchi-Rouet-Stora-Tuytin (BRST)
transformation, based on introducing superfields [17] (see
also the book [18]). A similar transformation was used in
the quantization of non-Abelian gauge theories [19]. In
condensed matter physics, this trick has been used for the
first time in Ref. [20].

Within this method one replaces solving an equation

FðAÞ ¼ 0; (15)

where F is a matrix function of a matrix function A, and a
subsequent calculation of a quantity BðA0Þ, where A0 is the
solution of Eq. (15), by an integral of the form

B ¼
Z

BðaÞ�ðFðaÞÞ
��������det

�
@F

@a

���������da: (16)

The � function can be written as

�½FðaÞ� ¼ C
Z

exp½ifFðaÞ�df;

where C is a coefficient, and the determinant is obtained
after integration of an exponential of a quadratic form in
Grassmann variables � and �þ.

Our problem of solving Eq. (13) and calculation of the
integral in Eq. (12) is of this type and we proceed following
the above trick. We introduce anticommuting variables �
and �� and a superfield �r;r0 ðRÞ, R ¼ fz; �; ��g,
�r;r0 ðRÞ ¼ ar;r0 ðzÞ�þ fTr;r0 ðzÞ�� þ �r;r0 ðzÞ þ �þ

r;r0 ðzÞ���
where a, f are real and � is an anticommuting field. The
field � is periodic as a function of �, �ð�Þ ¼ �ð�þ �Þ,
but is anticommuting. The Hermitian conjugation ‘‘þ’’
implies both the complex conjugation and transposition
‘‘T’’ with respect to r, r0.

As a result, one comes to an effective action quadratic in
� and linear in �rð�Þ. This allows us to integrate over
�rð�Þ with the Gaussian weight of Eq. (7) and we come to
the final expression for the partition function Z,

Z ¼ Z0

Z
expð�S0½�� � SB½�� � SI½��ÞD�; (17)

where S0½�� is the bare part of the action,

S0 ¼ i

2

X
r;r0

Z �
�r0;r

�
@

@�
þ ð"̂r � "̂r0 Þ

�
�r;r0

�
dR;

and the interaction terms are given by

SB ¼ �V0

2

X
r

Z
�ð�� �1Þ�r;rðRÞ

� ��½�r;rðR1Þ��1 þ 2i�rðR1Þ���1dRdR1;

SI ¼ V0

2

X
r

Z
�ð�� �1Þ�rðRÞ�rðR1Þ��1dRdR1;

�rðRÞ ¼ u
X
r0
½ð�r0;rðRÞ � nr0;r�Þð�r;r0 ðRÞ � nr;r0�Þ�:

Integration over R in Eq. (17) implies summation over �
and integration over u, �, �, ��. The bare action S0 and the
interaction term SI are invariant under the transformation
of the fields �

�r;r0 ð�; ��Þ ! �r;r0 ð�þ 	; �� þ 	�Þ � 	nr;r0 (18)

with 	 and 	� being anticommuting variables, whereas the
term SB breaks the invariance. The invariance under the
transformation (18) is stronger than the standard BRST
symmetry for stochastic field equations (invariance under
the transformation �ð��Þ ! �ð�� þ 	�Þ), Ref. [18], and
reflects additional symmetries of Eq. (13). It differs from
the full supersymmetry by the presence of the term 	nr;r0 in
Eq. (18) but still can lead to interesting Ward identities.
The model described by Eq. (17) can be studied using

standard methods of field theory. One can, e.g., expand in
the interaction V0 or develop a renormalization group
scheme analogous to that of Ref. [14]. In both cases, one
can use the Wick theorem with rather simple contraction
rules that follow from the form of the bare action S0. We
leave such calculations for future publications.
Neglecting the terms of third and fourth order in� of SB

and SI, the integral for partition function Z, Eq. (17),
becomes Gaussian and yields an RPA-like expression,

Z’Z0 exp

�
�T

2

X
!

Z ddk

ð2
Þd lnK
�
;

K¼ 1þV0

Z nðp�k=2Þ�nðpþk=2Þ
i!þ"ðp�k=2Þ�"ðpþk=2Þ

ddp

ð2
Þd :
(19)

The same result can be obtained using Eqs. (12) and (13)

and neglecting the field ~�rð�Þ in the left-hand side of
Eq. (13).
In Eq. (19), (K � 1) is the contribution of noninteracting

bosonic excitations. Considering their interaction originat-
ing from the cubic and quartic in � term in Eqs. (17) one
can fully describe the initial fermionic system. So, going
beyond RPA, Eq. (19), is straightforward and this is a very
important advantage with respect to the older bosonization
schemes [10–13]. We are confident that the present scheme
can improve the analysis of Ref. [14] of nonanalytical
corrections to the Landau Fermi liquid theory and expect
its usefulness for study of a large variety of problems of
strongly correlated systems.
Now we sketch a possible route for MC simulations.

Standard MC algorithms are based on using Eq. (8).
However, for some important configurations of �rð�Þ the
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fermionic determinant Zf½�ð�Þ� is negative, which makes

the MC procedure inefficient. This is the famous sign
problem.

Here we suggest to use instead of Zf½�ð�Þ� the

functional Zb½�ð�Þ�, Eq. (12), that can be found solving
Eq. (13). The solution of Eq. (13) and the function
Zb½�ð�Þ� can be approximated using a Green function

G�;u�
r;r0;r1;r01

ð�; �1Þ introduced as the solution of the equation�
@

@�
þH r;r0 ð�Þ

�
G�;u�

r;r0;r1;r01
ð�; �1Þ ¼ �ð�� �1Þ�r;r1�r0;r0

1
:

Then, we write the functional Zb½�ð�Þ� as

Zb½�ð�Þ� ¼ Z0 exp

�
� X

�;r;r1;r
0
1

X
i;j

Z 1

0
G�;u�

r;r;r1;r
0
1
ð�i; �jÞ

� ~�rð�iÞnr1;r01 ~�r1;r
0
1
ð�jÞ�2du

�
: (20)

Similarly to Eq. (8), we write the function

G�;u�
r;r;r1;r

0
1
ð�i; �jÞ for �> �i > �j > 0 in the form

G�;u�
r;r0;r1;r01

ð�i;�jÞ¼ P̂r;r0 ð�i;�jÞ
�½1� P̂r;r0 ð�j;0ÞP̂r;r0 ð�;�jÞ��1�r;r1�r0;r0

1
:

(21)

Herein, the operator P̂ is given by the expression

P̂ r;r0 ð�i; �jÞ ¼
Y

i	l	j

expð�H r;r0 ð�l; �; uÞ�Þ (22)

where the multipliers in the product are ordered in time
growing from the right to the left. (Of course, one should

discretize also the variable u.) The functionG�;u�
r;r0;r1;r01

ð�i; �jÞ
satisfies the symmetry relation

G �;u�
r;r0;r1;r01

ð�i; �jÞ ¼ �G�;u�
r0
1
;r1;r

0;rð�j; �iÞ; (23)

which allows one to consider times �> �j > �i > 0.

The form of the Green function Eq. (21) is typical for
bosons. By construction [see Eqs. (13) and (21)] it is real
unless a singularity is present, in which case an imagi-
nary part might be generated. We argue that a possible
zero in the Bose denominator in Eq. (21) is compensated
by the function �r1;r

0
1
, Eq. (13), vanishing at r1 ¼ r01.

Alternatively, one can antisymmetrize in the beginning
the function G in r1, r

0
1 by antisymmetrizing the � func-

tions in Eq. (13). This compensation is clearly seen in the
RPA, Eq. (19).

In the absence of any singularity, the result is insensitive
to the way of subdividing the interval (0, �) into slices and
Zb½�ð�Þ� remains positive in the process of the calculation
for any �rð�iÞ excluding the sign problem. Since Z can
now be expanded in a sum of positive terms, we believe
that this MC procedure can be efficient. The above deriva-
tion can be done using the ‘‘Ising spin’’ auxiliary field of

Refs. [4,6] as well, which is usually preferable for MC
computations.
In conclusion, the exact bosonization method presented

here opens new possibilities of both numerical and ana-
lytical study of models of interacting fermions. There is a
reasonable chance that this new formalism is free from the
sign problem supposed to be generically NP-hard [7] or
problems of equivalent complexity.
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