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Novel hard x-ray phase imaging microscopy that simply uses an objective and a transmission grating is

described. The microscope generated an image that exhibited twin features of a sample with an opposite

phase contrast having a separation of a specific distance. Furthermore, the twin features were processed to

generate an image mapping the x-ray phase shift through a simple algorithm. The presence of the grating

did not degrade the spatial resolution of the microscope. The sensitivity of our microscope to light

elements was about 2 orders of magnitude higher than that of the absorption contrast microscope that was

attained by simply removing the grating. Our method is attractive for easily appending a quantitative

phase-sensitive mode to normal x-ray microscopies, and it has potentially broad applications in biology

and material sciences.
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Nondestructive and quantitative visualization of internal
structures of materials with a nanometer-scale spatial reso-
lution will bring dramatic progress in biology and material
sciences. The development of hard x-ray focusing optics
has made x-ray microscopy a potential candidate for such a
technique [1–3]. Not only the spatial resolution of an
imaging technique but also its sensitivity is a key factor
that determines its performance. In conventional hard x-ray
imaging, the difference in absorption among materials has
been used for contrast formation, but the sensitivity is low
especially when materials consisting of light elements are
observed. In the early 1990s, several x-ray imaging tech-
niques measuring the phase shift of hard x rays were
proposed [4,5]; the so-called x-ray phase imaging tech-
nique has been highlighted because of its sensitivity to
light elements three orders of magnitude higher than that
of absorption-contrast imaging. Zernike’s phase-contrast
microscopy [6] has been applied for hard x rays [7,8], but
the technique is not quantitative for strong-phase objects.
Various other x-ray phase imaging microscopies have also
been proposed [9–16], but they require specially designed
x-ray optics [11,12,15] and/or a wave field that is mostly
coherent on their objective [9,10,12–16].

X-ray phase imaging and tomography techniques using
two transmission gratings [17–22], represented by x-ray
Talbot interferometry, have attracted increasing attention.
X-ray Talbot interferometry has been combined with the
optics of a normal x-ray microscope to append a mode for
phase sensitivity [23]. Differential phase images were
quantitatively generated for weakly absorbing objects.
Furthermore a three-dimensional observation through the
technique of x-ray phase tomography was conducted.
Although it consists of simple optics and does not require
high spatial coherence, x-ray differential phase imaging

using x-ray Talbot interferometry cannot realistically
achieve 1000-fold sensitivity [24]. In addition, magnifica-
tion reduces the sensitivity of differential phase imaging
because the slope of the wave front becomes gentle.
Another problem occurs wherein the spatial resolution is
limited by the pitch of the gratings.
In this Letter, we describe a novel x-ray phase imaging

microscope consisting of an objective and a single trans-
mission grating. The microscope can provide a phase
image without high spatial coherence and is quantitative
even to strong-phase objects, which is difficult to be cov-
ered by Zerinike’s phase-contrast imaging technique that is
widely used with x-ray microscopy.
The method presented here also uses the self-imaging

phenomenon [25] as in x-ray Talbot interferometry, but the
self-image is largely magnified by placing a grating just
behind the back-focal plane and resolved using an image
detector. This allows us to obtain a phase difference image;
it is not a differential phase image but twin phase images
separated by a specific distance. Therefore, the method is
inherently a phase imaging microscopy, which resolves the
problem with the sensitivity of the x-ray Talbot interfer-
ometry, while the spatial resolution is, in principle, almost
the same as that of the absorption-contrast microscopy.
Consider the setup shown in Fig. 1, where an objective,

e.g., Fresnel zone plate (FZP), is illuminated by a quasi-
monochromatic and quasiplane wave. A sample and a
detector are put on the object and image planes. The
magnificationM is given by b=a (a and b are the distances
from the FZP to the object and image planes). Assume that
a transmission grating G1 with a pitch of d1 is placed at a
distance R1 downstream from the back-focal plane of the
objective. We can show analytically that the focal point can
be regarded as an x-ray source of a spherical wave that
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generates a self-image of the grating. Under spherical-
wave illumination, the self-image with the Talbot order p
is formed at a distance downstream from the focal point,
R2, given by

R2 ¼ R1
2

R1 � pd21=�
; (1)

where � is an x-ray wavelength [25]. For a given R2 (for a
given M), two R1’s are allowed:

R1 ¼ R2

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pd21=�R2

q �
: (2)

The pitch d2 of the self-image is given by d1R2=R1. The
case of þ in Eq. (2) corresponds to Ref. [23], where an
amplitude grating was used at the position of the self-
image because d2 was too small to resolve directly. The
present approach corresponds to the case of �, where d2
was large enough to resolve. This allows us not only to skip
the use of the amplitude grating but to avoid the degrada-
tion in the spatial resolution due to the diffraction by G1 as
in Ref. [23].

The wave field Eðx; yÞ on the image plane can be written
in the paraxial approximation by

Eðx; yÞ � � 1
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where r is the distance from the focal point and E0 is the
electric field just behind the sample. The factor a0n is the
nth Fourier coefficient of the amplitude of the self-image,
given by a0n ¼ an exp½�ipn2�, where an is the nth Fourier
coefficient of the amplitude transmission function of the
grating. If the source is spatially incoherent, and the object
plane is sufficiently far from the source, the intensity Iðx; yÞ
on the image plane can be given by

Iðx; yÞ / X
n;m

�ma
0
na

0�
nþm exp

��2�imx

d2

�
E0;nE

�
0;nþm; (4)

where E0;n is defined by E0ð� 1
M ðxþ npd2Þ;� 1

M yÞ and

�m is the complex coherence factor of the x rays [26] at
two points separated by a distance mpd2=M incident on
the object plane, which is derived by the Van Cittert-
Zerinike theorem [27]. Note that a spatial coherence length
in the x direction that is comparable to pd2=M on the
object plane is sufficient for the Talbot effect to occur if
the spatial resolution that is determined by the FZP is
sufficiently high compared with d2=M.
Next, we measure Ikðx; yÞ by displacing the grating with

a step of kd1=N in the x direction [k ¼ 0; 1; . . . ; N �
1ðN � 3Þ]. Then, using the fringe-scanning method, the
first order Fourier term of Iðx; yÞ is obtained [28]:
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That is, interferences between neighboring orders are ex-
tracted. In practice using a grating with a Ronchi ruling is
convenient. Then, even order Fourier coefficient of the
amplitude transmission function except for the 0th order
vanishes. As a result, only two terms of a0�1a

0�
0 and

a00a0�1 in the summation of Eq. (5) remain. Conse-

quently, image Pðx; yÞ can be obtained as follows:

Pðx; yÞ ¼ a0�1a
0�
0E0;�1E

�
0;0 þ a00a

0�
1E0;0E

�
0;1: (6)

Note that ða0�1a
0�
0Þ� ¼ a00a0�1. Assuming that the sample

consists of weakly absorbing material for simplicity, we
can finally get a phase-difference image by taking the
argument of Pðx; yÞ:

arg½Pðx; yÞ� ¼ �ðxs þ pd2=M; ysÞ ��ðxs � pd2=M; ysÞ
2

;

(7)

where�ðxs; ysÞ is the phase shift by the sample and (xs, ys)
is the coordinate on the object plane defined by (�x=M,
�y=M). The shearing distance of the twin features is given
by pd2 on the image plane.
If the phase-difference image is included in the field of

view, a phase image �ðxs; ysÞ is calculated using the
following equation:

�ðxs; ysÞ ¼ 2
�J1

P�1
j¼�J2

P j þ J2
PJ1�1

j¼0 P j

J1 þ J2
; (8)

where J1, J2 � 1, P j � arg½Pðx� ð2jþ 1Þpd2; yÞ�, and
�ðxs � 2J1pd2=MÞ ¼ �ðxs þ 2J2pd2=MÞ ¼ 0 (no sam-
ple near the edges of the image) is assumed.
These theoretical results were demonstrated in an ex-

periment performed at BL20XU in SPring-8, Japan. The
x-ray beam from an undulator was monochromatized using
a Si 111 double crystal monochrometer. The experimental
station was located 245 m downstream from the source, the
width of which was 0.4 mm in the horizontal direction (the
x direction in Fig. 1). A beam stop, sample, objective,

FIG. 1 (color online). Setup of phase-difference x-ray micros-
copy with single grating (Gl).
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phase grating, and detector were arranged in the station, as
shown in Fig. 1. A commercially available 0:7-�m-thick
tantalum FZP (NTT-AT, outermost zone width: 86.6 nm,
diameter: 416 �m) fabricated on a 2 �m-thick SiC mem-
brane was used as an objective. The x-ray energy was fixed
at 9 keV, and the focal length (f) of the FZP was 261 mm.
To maximize the magnification, we placed the detector
at a position as far as possible within the experimental
space (6461 mm downstream from the FZP), and the
sample was placed on the object plane (272 mm upstream
from the FZP), resulting in a magnification of 23.7. An x-
ray camera consisting of a phosphor screen (10 �m-P43,
Gd2O2S:Tbþ fine powders), a relay lens, and a cooled
charge-coupled device (CCD) camera (Hamamatsu
Photonics C4742-98-24A, 1344� 1024 pixels) was used
as the detector. The effective pixel size of the detector was
4:34 �m, which corresponds to 183 nm on the object
plane.

A 4:3 �m-pitch gold Ronchi grating was used. Its thick-
ness was designed to be 0:92 �m as it works as a �=2
phase grating at 9 keV. The Talbot order was fixed at 1=2
(R1 ¼ 67:8 mm) because the effective photon number
used for obtaining a phase-difference image takes a maxi-
mum at p ¼ 1=2, 3=2, . . ., and the smallest p makes the
shear distance largest [21,25].

Figure 2 shows a phase-difference image of polystyrene
(PS) spheres. We used a 43-step fringe scan with an expo-
sure time of 2 sec each. The large number of steps was to
avoid the systematic error due to the higher order harmon-
ics [29]. The shear distance of the twin features was
395 �m on the detector, which agreed well with 2pd2
predicted through the theory described above [see Eq. (7)
]. Figure 2(b) is an enlarged image of the squared area in
Fig. 2(a). The filled circles in Fig. 2(c) are a section profile
along the dashed line in Fig. 2(b). The solid line in Fig. 2(c)
is the phase shift calculated for a PS sphere with a diameter

of 5:8 �m. Here the real part of the refractive index of PS
(1� 2:845� 10�6 at 9 keV) from a database [30] was
used. The good agreement of the experimental data with
the calculated data shows that the phase shift by the sample
is quantitatively retrieved. The standard deviation of the
noise in a flat field is 2�� 0:003 rad.
When the size of the sample is less than the shear

distance, as in Fig. 2, the features of the sample are phase
images in themselves. Otherwise, twin phase images with
different signs overlap each other, and another process
[Eq. (8)] is needed. Figure 3(a) is an example, where
twin phase images of a 1-�m-thick tantalum Siemens
star pattern overlaps. A phase image of the Siemens star
pattern was successfully retrieved from the twin images
using the Eq. (8) as shown in Fig. 3(b).
The spatial resolution in the horizontal direction was

estimated to be 450 nm from the edge of the Siemens star
pattern shown in Fig. 3(a). The resolution was almost the
same as that of the absorption-contrast image obtained
simply by removing the grating. The degradation in the
spatial resolution due to the grating, which was inevitable
in the case of the x-ray Talbot interferometer with an FZP
[23], was thus avoided.
Because no contrast was seen for the PS spheres in an

absorption-contrast image (not shown), the ratio of the
sensitivity of our method to that of the absorption-contrast
method could not be calculated directly. Instead, we dis-
cuss the sensitivity of the method, including the theoretical
aspect. Assuming that the phase shift of a sample is suffi-
ciently small, we compare the detection limit of the phase
shift in a phase-difference image [�ð�=2Þ] with that in an
absorption-contrast image [�ð�tÞ] obtained by removing
the grating. If these limits are determined only by photon
statistics, they are related as follows [24,31]:

�ð�=2Þ �
ffiffiffiffiffi
b0

p
�1b1

�ð�tÞ; (9)

where b0 and �1b1 are the 0th and the 1st Fourier coef-
ficients of the intensity of the self-image normalized by the
intensity when the grating is removed. In the case of Fig. 2,
b0 and �1b1 were experimentally estimated to be 0.49 and

FIG. 2. Phase image of PS spheres obtained by phase-
difference microscopy (gray scale: �0:5�	 0:5�). (a) Entire
field of view, where scale bar is given on detector. (b) Enlarged
image in square area shown in (a) (gray scale: �0:3�	 0:3�).
The scale bar is given on the object plane. (c) Section profile
along the line shown in (b). The filled circles are the experi-
mental data, and the solid line is the calculated data.

FIG. 3. Phase images of 1-�m-thick Ta Siemens star pattern.
(a) Phase-difference image with overlapped features of opposite
contrast and (b) retrieved phase image constructed from (a).
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0.27. The standard deviations of the noise in Fig. 2 and that
in an absorption-contrast image obtained without the grat-
ing were 0.019 and 0.0075, respectively, which are consis-
tent with Eq. (9). Once Eq. (9) is confirmed to be correct,
we can obtain the relationship between the detection limits
of the real part (1� �) and the imaginary part (�) of the
refractive index (�� and ��):

�� � 2
ffiffiffiffiffiffiffiffi
2b0

p
�1b1

��: (10)

In terms of the signal-to-noise ratio,

�

��
:
�

��
� 1:

2
ffiffiffiffiffiffiffiffi
2b0

p
�1b1

�

�
(11)

is found. Because � is 3 orders of magnitude larger than �
for light elements, we concluded that the method presented
here has a sensitivity about 2 orders of magnitude higher
than that of the absorption-contrast imaging.

In summary, novel x-ray phase imaging microscopy,
which simply consists of an objective and a transmission
grating, was formulated based on the Talbot effect. Phase-
difference images (twin phase images) could be generated
in an experiment using synchrotron radiation. The sensi-
tivity in the phase-difference image was about 2 orders of
magnitude higher than that of the absorption-contrast x-ray
microscopy that was attained by removing the grating,
while the spatial resolution was almost the same as that
of the absorption-contrast microscopy. Retrieval of a phase
image from twin phase images was also demonstrated. Our
approach is attractive for easily appending a phase-
sensitive mode to normal x-ray microscopes, and its quan-
titativity should make it possible for x-ray phase tomog-
raphy to be performed in near future. Thus our approach
will provide a powerful way in biology and material sci-
ence to visualize internal structures with a nanometer-scale
spatial resolution.
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and Technology.
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