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Fractional Brownian motion with Hurst index less then 1=2 and continuous-time random walk with

heavy tailed waiting times (and the corresponding fractional Fokker-Planck equation) are two different

processes that lead to a subdiffusive behavior widespread in complex systems. We propose a simple test,

based on the analysis of the so-called p variations, which allows distinguishing between the two models

on the basis of one realization of the unknown process. We apply the test to the data of Golding and Cox

[Phys. Rev. Lett. 96, 098102 (2006)], describing the motion of individual fluorescently labeled mRNA

molecules inside live E. coli cells. It is found that the data does not follow heavy tailed continuous-time

random walk. The test shows that it is likely that fractional Brownian motion is the underlying process.
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Distinguishing between normal and anomalous diffusion
is usually based on the analysis of the mean-squared dis-
placement (MSD) of the diffusing particles. In the case of
classical diffusion, the second moment is linear in time,
whereas anomalous diffusion processes exhibit distinct
deviations from this fundamental property. In particular,
subdiffusive systems are characterized by the sublinear
pattern hx2ðtÞi � t�, 0<�< 1, [1]. The origin of subdif-
fusive dynamics in a given system is often unknown. It is
not always clear which model applies to a particular system
[2,3], an information which is essential when diffusion-
controlled processes are considered. Therefore, determin-
ing the appropriate model of subdiffusive dynamics is an
important and timely problem; see [2–6] for discussion on
the origins of anomaly in the case of single protein fluctu-
ations and intracellular diffusion.

Two distinct processes have been proposed to account
for subdiffusion. The first one is the fractional Brownian
motion (FBM), [7]. FBM is a generalization of the classical
Brownian motion. The MSD of FBM satisfies hx2ðtÞi �
t2H, where 0<H < 1 is the Hurst exponent. Thus, forH <
1=2 we obtain the subdiffusive dynamics, [8,9].

The second model of subdiffusion is the continuous-time
random walk (CTRW) and the corresponding fractional
Fokker-Planck equation (FFPE) [1]. In this model, a par-
ticle performs random jumps whose length is given by the
probability density function (PDF) with finite second mo-
ment. The waiting times between consecutive jumps are
assumed to follow a power law t���1 with 0<�< 1.
These heavy tailed waiting times correspond to nonsta-
tionary increments and give rise to sublinear MSD of the
particle. As a consequence, the CTRW model exhibits

ergodicity breaking and aging. The MSD can be obtained
either by performing an average over an ensemble of
particles, or by taking the temporal average over a single
trajectory [10–12]. Recent advances in single molecule
spectroscopy enabled single particle tracking experiments
following individual particle trajectories [3,4]. These re-
quire temporal, moving averages. Although temporal aver-
ages of heavy tailed CTRW and FBM have been shown to
differ [10,12–14], the issue of determining the underlying
process is still open.
Motivated by growing interest in single molecule spec-

troscopy, in particular, by single particle tracking, we
propose a method to distinguish between mechanisms
leading to subdiffusion. Introducing such a method is
timely and goes beyond the very basic claims of ‘‘normal’’
vs ‘‘anomalous’’ diffusion by seeking an origin for the
anomalous. We apply our theoretical approach to experi-
mental data (random motion of an individual molecule
inside the cell by tracking fluorescently labeled mRNA
molecules in E. coli in the experiment described in details
in [3]) and resolve a recent controversy on the origin of the
Golding-Cox subdiffusion [12,13]. We clearly demonstrate
that, unlike some claims, the observed subdiffusion cannot
stem from a broad distribution of waiting times. It is likely
that fractional Brownian motion is the underlying process.
Subdiffusive dynamics.—We begin with recalling the

two models of subdiffusion, namely, FBM and CTRW.
For 0<H < 1, FBM of index H is the mean-zero

Gaussian process BHðtÞwhose covariance function is given
by EðBHðsÞBHðtÞÞ ¼ ð�2=2Þðs2H þ t2H � jt� sj2HÞ, t,
s > 0. Here, �2 ¼ EðB2

Hð1ÞÞ. For H ¼ 1=2, BHðtÞ reduces
to the standard Brownian motion BðtÞ. FBM is self-similar
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with respect to H [9], i.e., for every c > 0 we have

BHðctÞ ¼d cHBHðtÞ. Here, ¼d stands for ‘‘equal in distri-
bution.’’ Moreover, FBM has stationary increments. The
stationary sequence of FBM increments bHðjÞ ¼ BHðjþ
1Þ � BHðjÞ is very strongly correlated. One can show that
the autocovariance function of bHð�Þ satisfies rðjÞ ¼
EðbHðjÞbHð0ÞÞ� �2Hð2H � 1Þj2H�2 as j ! 1.

For the second moment of the FBMwe have EðB2
HðtÞÞ ¼

�2t2H, which for H < 1=2 gives the subdiffusive dynam-
ics. We assume that �2 ¼ 1. Note that one can always
normalize the process in such a manner by dividing it by
�> 0. The parameter � can be estimated using the prop-
erty BHðtþ sÞ � BHðtÞ � Nð0; �2s2HÞ.

The second fundamental model of subdiffusive dynam-
ics is the CTRWand the corresponding FFPE. A force-free
FFPE has the form [1]:

@wðx; tÞ
@t

¼ 0D
1��
t

�
1

2

@2

@x2

�
wðx; tÞ (1)

with the initial condition wðx; 0Þ ¼ �ðxÞ. Here, the opera-
tor 0D

1��
t , 0<�< 1, is the fractional derivative of the

Riemann-Liouville type. The derivation of the above equa-
tion is based on the CTRW scheme with heavy tailed
waiting times. It is easy to verify [1] that the MSD corre-
sponding to wðx; tÞ is equal to t�

�ð�þ1Þ .
In Eq. (1), wðx; tÞ denotes the PDF of a subdiffusive

stochastic process Z�ðtÞ. The process Z�ðtÞ can be equiva-
lently written in the form of subordination [15–17]

Z�ðtÞ ¼ BðS�ðtÞÞ; (2)

where BðtÞ is the standard Brownian motion and S�ðtÞ is
the inverse �-stable subordinator independent of BðtÞ. The
inverse �-stable subordinator is defined as

S�ðtÞ ¼ inff� > 0: U�ð�Þ> tg; (3)

0<�< 1, where U�ð�Þ is the �-stable subordinator [18]
with Laplace transform Eðe�uU�ð�ÞÞ ¼ e��u� . The process
S�ðtÞ is �-self-similar, and therefore Z�ðtÞ is �=2-self-
similar. For every jump of U�ð�Þ there is a corresponding
flat period of its inverse. These flat periods of S�ðtÞ are
characteristic for the subdiffusive dynamics and corre-
spond to the heavy tailed waiting times in the underlying
CTRW scenario. The Langevin-type process (2) corre-
sponding to FFPE (1) gives insight into the structure of
trajectories. Therefore, it allows to detect differences be-
tween single trajectories of FBM BHðtÞ and CTRW-based
model Z�ðtÞ.

p Variation.—Let us now discuss the idea of p variation,
p > 0, which will be our main tool in a procedure of
identifying the type of subdiffusion. The concept of p
variation generalizes the well-known notion of total varia-
tion, which has found applications in various branches of
mathematics, physics and engineering, like optimal con-
trol, numerical analysis of differential equations, and cal-
culus of variations [19]. Let XðtÞ be a stochastic process

observed on time interval ½0; T�. Then, for t 2 ½0; T�, the p
variation corresponding to XðtÞ is defined as

VðpÞðtÞ ¼ lim
n!1V

ðpÞ
n ðtÞ; (4)

where VðpÞ
n ðtÞ is the partial sum of increments of the

process XðtÞ given by

VðpÞ
n ðtÞ ¼ X2n�1

j¼0

��������X
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2n

^ t
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� X

�
jT

2n
^ t

���������
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(5)

with a ^ b ¼ minfa; bg. Let us underline that VðpÞ
n ðtÞ is

very easy to calculate, since it is just the finite sum of
pth powers of the increments of XðtÞ. For large enough n,

VðpÞ
n ðtÞ approximates nicely p variation VðpÞðtÞ. When p ¼

1, Vð1ÞðtÞ reduces to the total variation.
As an example let us recall the variational properties of

the standard Brownian motion. It is a well known fact that
the total variation of Brownian motion is infinite, which is
not very surprising given the ‘‘wild’’ behavior of the
trajectories of BðtÞ. However, the quadratic variation of

BðtÞ is finite and equals Vð2ÞðtÞ ¼ t [18].
It is well known that the p variation of the FBM BHðtÞ

satisfies [20]

VðpÞðtÞ ¼
8<
:
þ1 if p < 1

H ;

tEðjBHð1Þj1=HÞ if p ¼ 1
H ;

0 if p > 1
H ;

(6)

The expected value in the above expression is given by

EðjBHð1Þj1=HÞ ¼ 2 1
2Hffiffiffi
�

p �ð 1
2H þ 1

2Þ. Let us note that for the

considered here subdiffusive case H < 1=2, the quadratic

variation Vð2ÞðtÞ of BHðtÞ is infinite.
The p variation of the Langevin process Z�ðtÞ ¼

BðS�ðtÞÞ satisfies [21]

VðpÞðtÞ ¼
8<
:
þ1 if p < 2;
S�ðtÞ if p ¼ 2;
0 if p > 2:

(7)

The above formula confirms that the quadratic variation of
Z�ðtÞ is finite and equal to the inverse subordinator S�ðtÞ,
[22]. We underline that in this case Vð2ÞðtÞ is a stochastic
process and not the deterministic function as in (6).

Moreover, Vð2ÞðtÞ ¼ S�ðtÞ is an �-self-similar process.
Test.—Suppose we are given one realization (time se-

ries) of some subiffusive process XðtÞ observed on the time
interval ½0; T�. If not known, estimate the index of self-
similarity of the process XðtÞ, [10,12,23,24]. Recall that the
estimated self-similarity index will give us the approxi-
mate value of H or �=2 depending on the type of sub-
diffusion. Our goal is to verify if the subdiffusive dynamics
originates from the FBM process BHðtÞ or the CTRW-
based model Z�ðtÞ. Using Eqs. (6) and (7) we propose
the following procedure:
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p variation test.—Calculate the partial sums Vð1=HÞ
n ðtÞ

and Vð2Þ
n ðtÞ, which approximate 1=H variation and 2 varia-

tion of XðtÞ, respectively. Here, H is the previously esti-
mated self-similarity index. (i) If the process XðtÞ is the

FBM, then Vð1=HÞ
n ðtÞ � tEðjBHð1Þj1=HÞ and Vð2Þ

n ðtÞ should
increase with increasing n. (ii) If the process XðtÞ origi-
nates from the CTRW model Z�ðtÞ, then Vð1=HÞ

n ðtÞ should
tend to zero with increasing n, whereas Vð2Þ

n ðtÞ should

stabilize [recall that for Z�ðtÞ we have Vð2ÞðtÞ ¼ S�ðtÞ].
The implementation of the above test is based on the

computation of the finite sums VðpÞ
n ðtÞ (5), which is rather

straightforward for analytical models as well as for em-
pirical data.

For H very close to 1=2 it is necessary to take large

enough n while calculating the partial sum VðpÞ
n ðtÞ.

Otherwise, one can not practically distinguish the proper-
ties of p variation corresponding to BH and Z�.

In practice an analyzed empirical trajectory is given as a
time series Xðt1Þ; Xðt2Þ; . . . ; Xðt2N Þ. The sequence t1 <
t2 < . . .< t2N represents the time points, in which position
of the test particle is observed. In such setting, N is the

largest value for which the sum VðpÞ
N ðtÞ can be calculated.

Then, for fixed t ¼ ti, we have V
ðpÞ
N ðtÞ ¼ P

i�1
k¼1 jXðtkþ1Þ �

XðtkÞjp. Similarly, to determine VðpÞ
N�1ðtÞ, one has to sum up

the pth powers of the increments jXðt3Þ � Xðt1Þj; jXðt5Þ �
Xðt3Þj; . . . ; jXðt2N�1Þ � Xðt2N�3Þj. Then, for fixed t ¼ ti,

with i ¼ 2jþ 1, we have VðpÞ
N�1ðtÞ ¼

Pj
k¼1 jXðt2kþ1Þ �

Xðt2k�1Þjp. Consequently, to determine VðpÞ
N�2ðtÞ, one

sums up the pth powers of the increments jXðt5Þ �
Xðt1Þj; jXðt9Þ � Xðt5Þj; . . . , etc. Finally, plotting VðpÞ

n ðtÞ

for different values of n and observing how it behaves
while n increases/decreases, one can draw conclusions on
the origins of subdiffusion.
First, we tested the algorithm on simulated data. We

simulated one trajectory of FBM BHðtÞ and one trajectory

of Z�ðtÞ. We demonstrate the results in Fig. 1. The qua-

dratic variation of BHðtÞ diverges, whereas the quadratic

variation of Z�ðtÞ is equal to S�ðtÞ. Moreover, the
1=H variation of BHðtÞ is a linear function, while the
1=H variation of Z�ðtÞ vanishes. These differences in the
behavior of variations of both subdiffusive processes BHðtÞ
and Z�ðtÞ allow to distinguish between mechanisms lead-
ing to subdiffusion.
Next, we applied the test to the Golding-Cox experi-

mental data [3]. We analyzed six two-dimensional sample
paths (all those having more than 29 ¼ 512 points, which
seems reasonable for the p variation test) from their set of
27 trajectories. We examined X and Y coordinates as well
as the two-dimensional trajectories separately. The test
clearly demonstrated (see the supplementary material in
Ref. [25] for the details, and Fig. 2 for the analysis of one
sample trajectory) that the subdiffusion cannot stem from
the CTRW model. Moreover, the test also shows that there
is no reason to reject the hypothesis that the data follows
FBM. This resolves a recent controversy over the under-
lying reason for the Golding-Cox subdiffusion [12,13].
However, to reach a more conclusive statement on the
FBM origins of the experimental data, longer trajectories
and extended statistical analysis are necessary.
The conclusion also concurs with the result of [10]

contrasting temporal average of heavy tailed CTRW with
that of FBM. We strongly believe that our approach pro-

c d

FIG. 1 (color online). In panels (a)–(b) the analysis of a simulated trajectory of FBM BHðtÞ, with Hurst index H ¼ 0:3, is presented.

Panel (a) shows the value of Vð1=HÞ
n ðtÞ, n ¼ 12, corresponding to the sample path of BHðtÞ (solid blue line). The dotted red line is the

theoretical 1=H variation of FBM given in Eq. (6). We observe excellent agreement between the two lines. The approximation gets

even better for larger n. Panel (b) depicts the value of Vð2Þ
n ðtÞ corresponding to the simulated trajectory of BHðtÞ, calculated for different

n ¼ 10; 12; . . . ; 18. We observe the rapidly increasing values of Vð2Þ
n ðtÞ while n increases. This demonstrates the fact that the quadratic

variation of BHðtÞ is infinite forH < 1=2. Panels (c)–(d) depict the analysis of a simulated trajectory of the process Z�ðtÞ with � ¼ 0:6.

In panel (c) we see the value of Vð1=HÞ
n ðtÞ corresponding to the sample path of Z�ðtÞ calculated for different n ¼ 10; 12; . . . ; 18. We

observe that Vð1=HÞ
n ðtÞ tends to zero while n increases. This confirms the fact that the 1=H variation of Z�ðtÞ is equal to zero. Panel (d)

shows the value of Vð2Þ
n ðtÞ, n ¼ 12, calculated for the simulated trajectory of Z�ðtÞ (solid blue line). The dotted red line is the trajectory

of the inverse subordinator S�ðtÞ. We observe excellent agreement between the two lines, which confirms that the quadratic variation of
Z�ðtÞ is equal to S�ðtÞ. For larger n the approximation is even better. The observed differences in the behavior of quadratic and
1=H variations corresponding to BHðtÞ and Z�ðtÞ allow to distinguish between mechanisms leading to subdiffusion.
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vides a way, missing up to now, to look deeper into
processes leading to single particle diffusion.

Finally, we note that the same methodology based on p
variations can be applied to analyze another model of
subdiffusion—random walks on fractal structures. Our
preliminary results show that the quadratic variation of a
random walk on a Sierpinski gasket embedded in two
dimensions is infinite (similar to the FBM and different
from the CTRW). The p variation is finite for p ¼ dw,
where dw ¼ log5= log2 ¼ 2:32193 . . . is the walk dimen-
sion, which corresponds to the self-similarity index of the
Sierpinski gasket.
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FIG. 2 (color online). Panel (a) shows the 1=H variation

Vð1=HÞ
n ðtÞ of one sample trajectory taken from Golding-Cox

empirical data (with H ¼ 0:35 as in [3]). Parameters: n ¼ 10
(blue line); n ¼ 9 (red line); n ¼ 8 (green line); n ¼ 7 (black
line). We observe that the 1=H variation does not exhibit any

trend, meaning that Vð1=HÞ
n ðtÞ neither increases nor decreases with

increasing n. Similar behavior is observed for simulated trajec-
tories of the FBM with the same number of points. In panel (b)

the 2 variation Vð2Þ
n ðtÞ of the analyzed trajectory is presented.

Parameters as in panel (a). The 2 variation increases with
increasing n, which confirms that the 2 variation is not finite.
Thus, the data does not follow CTRW model.
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