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We show that arbitrary functions of continuous variables, e.g., position and momentum, can be used to

generate tests that distinguish quantum theory from local hidden variable theories. By optimizing these

functions, we obtain more robust violations of local causality than obtained previously. We analytically

calculate the optimal function and include the effect of nonideal detectors and noise, revealing that

optimized functional inequalities are resistant to standard forms of decoherence. These inequalities could

allow a loophole-free Bell test with efficient homodyne detection.
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Bell famously showed that the predictions of quantum
mechanics (QM) are not always compatible with local
hidden variable theories (LHV) [1]. Surprisingly, this fun-
damental result, which underpins the field of quantum
information, has not been rigorously tested [2]. There are
no experiments yet that can eliminate all LHV, either due to
low detection efficiencies [3,4] or lack of causal separation.
Rigorous tests are also needed to fully implement some
quantum information protocols, like that of Ekert [5] which
employs a Bell inequality (BI) as a test of security in a
cryptographic scheme. All of these early tests and proto-
cols employed quantum measurements with discrete out-
comes of spin or particle number.

In this Letter, we develop functional moment inequal-
ities to test for quantum nonlocality. We then use varia-
tional calculus to optimize the choice of measured
function. As a result, we obtain Bell nonlocality for larger
losses and for greater degrees of decoherence than possible
previously. The outcome can be feasibly tested in the
laboratory, since the detectors required are efficient quad-
rature detectors. More generally, functional nonlocality
measures could lead to new applications in quantum infor-
mation. The important advantage is a much greater robust-
ness to noise and loss.

As well as potentially overcoming the loophole problem
mentioned above, formalisms to test LHV for continuous
variables provide an opportunity for testing QM in new
environments, and give a better understanding of the origin
of the nonlocal features of QM. This is particularly true
given that entanglement [6] alone does not guarantee fail-
ure of LHV for mixed states [7].

With this objective, there is the fundamental question of
how to quantify the strength of nonlocality, in the absence
of a single test for nonlocality that is necessary and suffi-
cient for any quantum state. Mermin [8] used as a measure
the deviation of the QM prediction from the LHV bound,
based on a particular BI. A second strategy discussed
recently by Cabello et al. [4] is to quantify the strength
of nonlocality by the robustness of the violation with

respect to a decoherence parameter. In this approach one
determines the critical efficiency � or the critical degree of
purity p required for a violation. Here, we evaluate all three
measures to show strong correlations between them.
Recently, Cavalcanti et al. (CFRD) showed [9] that Bell

inequalities can be derived for the case of observables with
continuous and unbounded outcomes, like position and
momentum. This approach is significant in establishing
that quantum nonlocality does not rely on the discreteness
of the measurement outcomes. Continuous variable (cv)
inequalities also provide an avenue to understanding how
manifestations of quantum nonlocality can be manipulated
by choice of observable.
The original CFRD inequality [9] is jhQN

k¼1ðxk þ
ipkÞij2 � h�N

k¼1ðx2k þ p2
kÞi, where xk, pk are the outcomes

of two arbitrary measurements, represented in QM by

observables X̂k, P̂k, at site k [10]. Where X̂ and P̂ are
quadrature measurements with canonical position and mo-
mentum commutation relations, CFRD showed that the

symmetric state fj0i�N=2j1i�N=2 þ j1i�N=2j0i�N=2g= ffiffiffi
2

p
violates the inequality for N � 10. In this case, the states

j0i, j1i are eigenstates of aya where â ¼ X̂ þ iP̂, so the
prediction could in principle be tested with photonic
Greenberger-Horne-Zeilinger (GHZ) states produced in
the laboratory [11]. Note that in the above state there are
N field modes but only N=2 photons. It can be prepared

from a N=2-photon GHZ state fjHi�N=2 þ jVi�N=2g= ffiffiffi
2

p
,

where jHi, jVi represent horizontally or vertically polar-
ized single-photon states, by passing each photon through a
polarizing beam splitter. These violations are robust with
loss. The critical efficiency �crit required for violation
tends to �crit ¼ 0:81, as N ! 1. Quadrature measure-
ments with local oscillators are highly efficient, with re-
ported efficiencies of 99%. However, generation losses
from mode-matching can degrade the experimental effi-
ciency, so 81% is still a challenging practical benchmark.
Instead, we introduce a functional moment Bell inequal-

ity by considering arbitrary functions of the outcomes at
each site. This new approach to nonlocality utilizes a
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general functional optimization of continuous variable ob-
servables. We find the optimal function that maximizes a
violation of the inequality for a given efficiency� and state
purity p. We show that the optimal function has the form
x=ð1þ "Nx

2Þ, where "N is a parameter related to N and �.
This gives an inequality which is violated by the GHZ
states of (6) for N � 5. The violation increases exponen-
tially with N, while �crit decreases asymptotically to 0.69
for a pure state (with p ¼ 1), thus dramatically reducing
both the number of modes required, and the required
efficiency.

When the functions correspond to a simple binning of a
cv observable to give binary outcomes [12], our inequal-
ities reduce to those of Mermin [8]. We extend the analysis
of Mermin and Acin et al. [13], and calculate results for
homodyne detection for more feasible types of state. We

find that ð�p2Þcrit ¼ 2ð1�2NÞ=N�, which gives a critical
efficiency for a pure state at large N of � ¼ 0:79.

Functional moment inequalities.—We present a proof of
the functional moment inequality taking explicit account
of functions of measurements that can be made at each of
N spatially separated sites. We denote the measurement
made on the system at the kth site by X�

k , and the outcome

of the measurement by x�k , where � represents a choice of

measurement parameter. Bell’s assumption that LHV can
describe the outcomes implies that the measurable mo-

ments hx�1x�2 . . . x’Ni can be expressed in terms of a set of
hidden variables � as

hx�1x�2 . . . x’Ni ¼
Z
�
d�Pð�Þhx�1i�hx�2 i� . . . hx’Ni�; (1)

where hx�ki� is the average of x�k given a LHV state �. Next
we construct, for each site k, real functions of two observ-

ables fkðx�kÞ, gkðx�0k Þ, and define the complex function:

Fk ¼ fkðx�kÞ þ igkðx�0k Þ. The complex moment

hF1F2 . . .FNi can be expressed in terms of real-valued

expressions of the type hf1ðx�1Þg2ðx�
0

2 Þ . . . fNðx’NÞi, etc. Of
course, fkðx�kÞ is an observable obtained from x�k by local

post-measurement processing. Equation (1) must therefore

also be valid for hfðx�1Þfðx�2 Þ . . . fðx’NÞi ¼
R
� d�Pð�Þ�

hfðx�1Þi�hfðx�2 Þi� . . . hfðx’NÞi�. For an LHV, the expectation

value of products of the Fk must satisfy

hF1 . . .FNi ¼
Z
�
d�Pð�ÞhF1i� . . . hFNi�; (2)

where hFki� � hfkðx�kÞi� þ ihgkðx�0k Þi�. From (2), the fol-

lowing inequality must therefore hold:

jhF1F2 . . .FNij2 �
Z

d�Pð�ÞjhF1i�j2 . . . jhFNi�j2: (3)

Now, for any particular value of �, the statistics predicted
for fkðxkÞ must have a non-negative variance, i.e.,
hfkðxkÞi2� � hfkðxkÞ2i�. Writing (3) explicitly in terms of
the fk’s and using this variance inequality we arrive at the

CFRD inequality with functional moments:

��������
�YN
k¼1

½fkðx�kÞþ igkðx�0k Þ�
���������

2�
�YN
k¼1

½fkðx�kÞ2þgkðx�0k Þ2�
�
:

(4)

We will measure the violation of this inequality by the
ratio of the left- (LHS) and right-hand sides (RHS).
Defining the Bell observable B ¼ ðLHSÞ=ðRHSÞ, failure
of LHV is demonstrated when B> 1. In order to get
stronger violation of local causality, we optimize the func-
tion of observables by considering

�B

�fkðgkÞ ¼ 0: (5)

Here, we consider the class of entangled states

jc i ¼ ðj0i�rj1i�ðN�rÞ þ j1i�rj0i�ðN�rÞÞ= ffiffiffi
2

p
: (6)

Thus r ¼ N corresponds to extreme photon-number-
correlated states, a superposition of a state with 0 photons
at all sites and a state with 1 photon at each site. Next, we
consider how to optimize the function fk and gk to generate
a robustly violated inequality, including losses and noise.
We use variational calculus to find the optimal function

using the condition of Eq. (5). For simplicity, we assume
the functions fk and gk are odd. The LHS can be maxi-
mized by choosing orthogonal angles, while the RHS is
invariant with angles. We find that

BN ¼
2N�1ð2�ÞN=2

�Q
N
k¼1 I

þ
k þQ

N
k¼1 I

�
k

�
2

Q
r
k¼1 Ik

QN
k¼rþ1 I

0
k þ

Q
r
k¼1 I

0
k

QN
k¼rþ1 Ik

; (7)

where I�k ¼ 2
R
e�2x2xf�k dx, Ik ¼ 4

R
x2e�2x2½ðfþk Þ2 þ

ðf�k Þ2Þ�dx, and I0k ¼
R
e�2x2½ðfþk Þ2 þ ðf�k Þ2Þ�dx are differ-

ent integrals for x which contribute to the expectation
values in both sides of inequality (4). Here f�k ¼
fk � gk, and the factor e�2x2 was obtained from the joint
probability of observables. Requiring �BN=�f

�
k ¼ 0, we

find the optimal condition: fkðxÞ ¼ �gkðxÞ. The compo-
nents of complex functions fk, gk are the same at each site,
and have the form

fkðxÞ ¼ gkðxÞ ¼ x

1þ "Nx
2
: (8)

For the even N case, it is optimal to choose r ¼ N=2. Then
"N is independent of N, but has to be calculated numeri-
cally since it satisfies a nonlinear integral equation: "N ¼
4I0=I.
For N an odd number, the greatest violations occur for

r ¼ ðN � 1Þ=2. The optimal function has the same form as
in (8) except that the parameter "N changes to "0N , where

"0N � "N

�
N"þN � "�N
N"þN þ "�N

�
; (9)
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and "�N ¼ "N � 4. However, the numerical value of "N and
"0N now depend on N, as the integral equation (9) for odd
values of N is N dependent. This provides better violations
of (4) than any other arbitrary function, provided N � 5.
The maximum BN value with this optimal choice is shown
in Fig. 1, compared with the CFRD result which uses a
simple correlation function.

Binned cv outcomes for the Mermin-Klyshko inequal-
ity.—(MK) [14]. We will also briefly consider binning
methods. Specifically, we define the binning functions
fkðxÞ ¼ gkðxÞ ¼ fbinðxÞ ¼ þ1 if x � 0 and�1 otherwise.
For such discrete outcomes, the original formalisms of
Mermin and Klyshko [8,14] can be used. The CFRD
inequality for discrete outcomes reduces to that of
Mermin [8], as can be seen by noting that ½fbin�2 ¼ 1.
Here it is known that the Bell inequality introduced for

this discrete case by Klyshko is stronger. Defining Fk ¼
fbinðx�kÞ þ ifbinðx�0k Þ and �N ¼ Q

N
k¼1 Fk, we can use the

MK inequality jSNj � 1, where SN ¼ 2�N=2½Ref�Ng �
Imf�Ng�, for N even, and SN ¼ 2�ðN�1Þ=2ReðImÞf�Ng or
SN ¼ 2�ðN�1Þ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRef�NgÞ2 þ ðImf�NgÞ2

p
for N odd.

These BI have been considered recently for the case of
extreme photon-number correlated states, where r ¼ N, by
Acin et al.. We can also define�N by exchanging the local
observables, to obtain similar inequalities.

We generalize this approach to account for more general

angles and states. We find an optimal violation of BN ¼ffiffi
2

p
2 ð4�ÞN=2, for arbitrary r and N, with the optimal phases:

�k ¼ ð�1ÞNþ1�ðk� 1Þ=ð2NÞ, �0k ¼ �k þ �=2 for k � r,
and �k ¼ ð�1ÞN�ðk� 1Þ=ð2NÞ, �0k ¼ �k � �=2 for k > r.
This result has been presented by Acin et al. [13] for the
special case of r ¼ N. We confirm the exponential increase
with number of sites N, but also make the observation that

the violation occurs for all types of states of the form (6),
independently of r. This contrasts with the result for the
CRFD inequality, which requires r	 N=2 for violation.
However, as explained earlier, the states with r ¼ N=2 are
straightforwardly feasible given a polarization GHZ state,
as opposed to the extreme photon-number correlated states
considered by Acin et al. Therefore, this is a very important
experimental advantage. Violation of the MK inequality
with binning is possible for N � 3, but, as we will see, this
strategy is sensitive to losses and noise.
Sensitivity to loss and state impurity.—The value of the

Bell observableBN increases with the number of sitesN, so
this is suggestive of a strategy that will allow genuine
loophole-free violations of local causality. However, it
may be argued that since increasing the number of sites
will increase the number of detectors required, there will
be no advantage. Only careful calculation of the Bell
observable BN including the detection efficiency � can
determine whether the strategy is advantageous.
Loss is modeled as follows. The field modes ak at each

site are independently coupled to a second mode ak;vac
respectively, assumed to be in a vacuum. Photons are lost
from the field into the vacuum mode, the strength of
coupling determining the rate of loss. This beam splitter
model gives the final detected and vacuum mode in terms
of the inputs a and avac

aout ¼ ffiffiffiffi
�

p
aþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

avac;

avac;out ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
a� ffiffiffiffi

�
p

avac;
(10)

where � is the efficiency, the probability of detecting a
photon after coupling. Since we only measure the ‘‘aout’’
not the ‘‘avac;out’’, we need to trace over the latter modes to

obtain the final density operator �out for the detected
modes after loss. We can also examine the effect of impu-
rity, by considering a state �0 ¼ pjc ihc j þ ð1� pÞ�mix,
where �mix is the mixed state obtained with a model for

decoherence in the occupation-number basis, i.e., �mix ¼
½j0i�rj1i�ðN�rÞh0j�rh1j�ðN�rÞ þ j1i�rj0i�ðN�rÞ �
h1j�rh0j�ðN�rÞ�=2, and p is the probability the system is in
the original pure state (6).
Including the effect of detection inefficiencies and noise,

the parameter "N is changed to "Nð�Þ for the optimum
function. For N even we find that

"Nð�Þ¼ 2�"N
2�þð1��Þ"N ; BN ¼2N�2

�
2ðIþÞ4ð�pÞ2

�I0C

�
N=2

;

(11)

where "N is defined as before, and C ¼ �I þ ð1� �ÞI0.
For the case of odd N the relevant integral equations
change, giving a modified (and slightly reduced) Bell
variable B0

N , where

FIG. 1 (color online). Maximum violations of functional cv
inequality with GHZ states as a function of the number of modes.
The violations using the optimal function (solid) are much
stronger than the CFRD result (dashed).
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"0Nð�Þ ¼ "Nð�ÞN"þN ð�Þ � "Nð�Þ"�N="N
N"þN ð�Þ þ "2Nð�Þ"�N="2N

;

B0
N ¼ 2

ffiffiffiffiffiffiffiffi
I0C

p

I0 þ C
BN:

(12)

Here "þN ð�Þ ¼ "Nð�Þ þ 4, and BN is defined as in Eq. (11).
This approach is applied to enable a prediction of the

effect of loss and noise on the functional inequalities, and
the results are plotted in Fig. 2. These results can be
compared with the MK binning approach. With the choice
of optimal angles, we find the values of the MK Bell

observable with binned cv outcomes is BNðp;�Þ ¼
ffiffi
2

p
2 �

ð4�p2

� ÞN=2, which gives the effect of detection inefficiencies

and noise for the optimal choice of angles. That implies a

critical minimum efficiency and purity ð�p2Þcrit ¼
2ð1�2NÞ=N� in order to violate the inequality. For lower
N, the strategy of binning and using the MK inequality
shows an advantage, by allowing a violation for N ¼ 3, 4,
5,—but even if p ¼ 1, high efficiencies �> 0:99, 0.93,
0.90 are required. While high detection efficiencies are
feasible for homodyne detection, these efficiency and pu-
rity values are still quite challenging once generation losses
are also taken into account. In view of this, the high re-
quirement for �crit for the case N ¼ 3, may be prohibitive.

These results show that the functional inequality has
much greater robustness against noise and inefficiency
than the MK inequality. For N > 7, the functional cv
inequality used with an optimal function, allows violation
of LHV at much lower efficiencies and larger maximum
noise. The asymptotic decoherence product is ðp�Þ1 	
0:6918 in the large N limit. For a moderate efficiency
�crit 	 80% one requires N ¼ 10 for the optimized func-
tion, while the binned MK case requires N 	 40.

In conclusion, we have developed a new direction for
the analysis of cv nonlocality. For the input state treated
here, the optimal measured function always has the same
functional form apart from changing the parameter ", but

more generally, the functional form may depend on the
experimental decoherence. Future research may include
further optimization of the functions for different en-
tangled states and application of this method to tests of
other forms of nonlocality—i.e., entanglement [15] and
EPR steering [16].
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