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The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is

presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum

field theory on a causal set. This work can be viewed as a novel regularization of quantum field theory

based on a Lorentz invariant discretization of spacetime.
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The possibility that spacetime is fundamentally discrete
presents one way to regulate the divergences in quantum
field theory and the singularities in general relativity.
Causal set theory provides a model of discrete spacetime
in which spacetime events are represented by elements of a
causal set—a locally finite, partially ordered set in which
the partial order represents the causal relationships be-
tween events.

Causal sets can be considered as physical spacetimes in
their own right [1] (in particular, in attempting to solve the
problem of quantum gravity [2–4]) or they can be consid-
ered as merely Lorentz invariant discretizations of contin-
uum spacetimes: Lorentzian random lattices. Here we
develop a formalism for quantum field theory on a causal
set which is applicable to both points of view (alternative
approaches include [5,6]). The main result is the construc-
tion of the Feynman propagator for a real scalar field on a
causal set. This work extends previous results for propa-
gators on a causal set [7].

The ultimate aim would be to develop physically real-
istic quantum field theories on a causal set. Not only would
one expect such field theories to be better defined than their
continuum counterparts but one would hope to obtain new
predictions for the behavior of matter which could provide
evidence for spacetime discreteness.

A causal set (or causet) is a locally finite partial order,
i.e., a pair (C, � ) where C is a set and � a relation on C
which is (i) reflexive (x � x), (ii) antisymmetric (x � y �
x ) x ¼ y), (iii) transitive (x � y � z ) x � z), and
(iv) locally finite (jfz0 2 Cjx � z0 � ygj<1) for all x, y,
z 2 C. Here jAj denotes the cardinality of a set A. We write
x � y if x � y and x � y.

The set C represents the set of spacetime events and the
partial order � represents the causal order between pairs of
events. If x � y we say ‘‘x is to the causal past of y’’. The
causal relation of a Lorentzian manifold (without closed
causal curves) satisfies conditions (i)–(iii). It is condition
(iv) that enforces spacetime discreteness—each causal in-
terval contains only a finite number of events.

A sprinkling is a way to generate a causal set from a
d-dimensional Lorentzian manifold (M, g). Points are
placed at random within M using a Poisson process (with

density �) so the expected number of points in a region of
d-volume V is �V. This generates a causal set whose
elements are the sprinkled points and whose partial order
relation is ‘‘read off’’ from the manifold’s causal relation
restricted to the sprinkled points.
Here we shall only consider causal sets generated by

sprinkling into d-dimensional Minkowski spacetime, Md.
Such causal sets provide a discretization of Md which,
unlike a regular lattice, is Lorentz invariant ([4] Sec 1.5).
A link between u, v 2 C (written u �� v) is a relation

u � v such that there exists no w 2 C with u � w � v.
A linear extension of the causal set (C, �) is a total order

(C, �) which is consistent with the partial order. This
means that u � v ) u � v for all u, v 2 C.
Labeling the elements of a finite causal set (with p

elements) v1; . . . ; vp there are two p� p adjacency ma-

trices: the causal matrix C and link matrix L defined by

Cxy :¼
�
1 if vx � vy

0 otherwise;
Lxy :¼

�
1 if vx ��vy

0 otherwise:
(1)

Free scalar quantum field theory in the continuum.—We
briefly review the quantum field theory for a free real scalar
field on Md (following the sign conventions of [8]). The

defining equation for a Green’s functionGðdÞ for the Klein-
Gordon equation is

ðhþm2ÞGðdÞðxÞ ¼ �dðxÞ: (2)

Here x ¼ ðx0; ~xÞ ¼ ðx0; xiÞ (for i ¼ 1; . . . ; d� 1), m is the
mass of the field, �d is the d-dimensional delta function
and we choose units with @ ¼ c ¼ 1. The d’Alembertian is
h :¼ @2

x0
� @2~x.

Three important Green’s functions (or propagators) are
the retarded GR, advanced GA and Feynman GF. InM

2 we
have [7], ([9], p. 23)

Gð2Þ
R ðxÞ :¼ �ðx0Þ�ðs2Þ 1

2
J0ðmsÞ; (3)

Gð2Þ
A ðxÞ :¼ Gð2Þ

R ð�xÞ; (4)

Gð2Þ
F ðxÞ :¼ 1

4
Hð2Þ

0 ðmsÞ; (5)
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where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx0Þ2 � ðx1Þ2p
for ðx0Þ2 � ðx1Þ2 and s ¼

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1Þ2 � ðx0Þ2p

for ðx0Þ2 < ðx1Þ2. J0 is a Bessel function
of the first kind, Hð2Þ

0 is a Hankel function of the second

kind and

�ð�Þ ¼
�
1 if � � 0
0 if �< 0:

(6)

In M4 we have ([8] Appendix 1):

Gð4Þ
R ðxÞ :¼ �ðx0Þ�ðs2Þ

�
�ðs2Þ
2�

� m

4�s
J1ðmsÞ

�
; (7)

Gð4Þ
A ðxÞ :¼ Gð4Þ

R ð�xÞ; (8)

Gð4Þ
F ðxÞ :¼ 1

4�
�ðs2Þ � m

8�s
Hð2Þ

1 ðmsÞ; (9)

where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx0Þ2 � ~x2
p

for ðx0Þ2 � ~x2 and s ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 � ðx0Þ2p

for ðx0Þ2 < ~x2. J1 is a Bessel function of

the first kind and Hð2Þ
1 is a Hankel function of the second

kind and �ðs2Þ is the delta function of s2.
The Pauli-Jordan function is defined as [8]

�ðxÞ :¼ GRðxÞ �GAðxÞ: (10)

We drop the dimension superscripts whenever we refer to
arbitrary dimension.

Fields in the continuum.—A free real bosonic scalar field

is represented by an algebra of field operators �̂ðxÞ (which
act on a Fock space F) satisfying the following conditions:

1: ðhþm2Þ�̂ðxÞ ¼ 0; (11)

2: �̂ðxÞ ¼ �̂ðxÞy; (12)

3: ½�̂ðxÞ; �̂ðyÞ� ¼ i�ðy� xÞ: (13)

In addition there exists a Poincaré invariant vacuum state
j0i 2 F. With the fields so defined the Feynman propaga-
tor is given by the vacuum expectation value of the time-
ordered product of two field operators:

GFðy� xÞ ¼ ih0jT�̂ðxÞ�̂ðyÞj0i: (14)

The time ordering has time increasing from right to left.
Applying (hx þm2) to the commutator in (13) gives

½ðhx þm2Þ�̂ðxÞ; �̂ðyÞ� ¼ ðhx þm2Þi�ðy� xÞ ¼ 0:

(15)

That is, even if only (12) and (13) hold, we have that ðhx þ
m2Þ�̂ðxÞ commutes with all the �̂ðyÞ [10].

Free scalar quantum field theory on a causal set.—Let
(C, �) be a finite causal set with p elements v1; . . . ; vp

generated by sprinkling (with density �) into a finite causal
interval in Md.

For sprinklings into M2 the p� p matrix

Kð2Þ
R

:¼ aCðI�abCÞ�1; a¼ 1

2
; b¼�m2

�
; (16)

(where I is the identity matrix, C the causal matrix for the
causal set and m is the mass of the field) is the appropriate
definition of the retarded propagator [7].
For sprinklings into M4 the p� p matrix

Kð4Þ
R

:¼aLðI�abLÞ�1; a¼
ffiffiffiffi
�

p
2�

ffiffiffi
6

p ; b¼�m2

�
; (17)

(where L is the link matrix for the causal set) is the
appropriate definition of the retarded propagator. Both
these matrices were defined and studied in detail in [7].
Our goal now is to define a p� p matrix KF to serve as

the Feynman propagator on a causal set. We drop the
dimension superscripts to be able to refer to sprinklings
in either M2 or M4.
If KR is the retarded propagator it follows that its trans-

pose KA :¼ KT
R is the advanced propagator and the real

matrix defined by

� :¼ KR � KA; (18)

is the causal set analogue of the Pauli-Jordan function.
The matrix i� is skew-symmetric and Hermitian. These

two properties ensure its rank is even [11] and its nonzero
eigenvalues appear in real positive and negative pairs. In
particular (if its rank is nonzero) there exist nonzero ei-
genvalues and normalized eigenvectors such that:

i�ui ¼ �iui; i�vi ¼ ��ivi; (19)

(with �i > 0) for i ¼ 1; . . . ; s where 2s is the rank of i�.
These eigenvectors are each defined up to a phase factor

and can be chosen such that ui ¼ v�
i , u

y
i uj ¼ vy

i vj ¼ �ij,

uyi vj ¼ 0 for all i, j ¼ 1; . . . ; s (where z� denotes the

complex conjugate of z and uy :¼ ðu�ÞT is the Hermitian
conjugate of a column vector u).
It is useful to define the Hermitian p� p matrix

Q :¼ Xs
i¼1

�iuiu
y
i ; (20)

such that i� ¼ Q�Q� ¼ Q�QT .
Fields on a causal set.—We now define an algebra of

field operators �̂x (acting on some Hilbert space H) to
represent a free real bosonic scalar field on the causal set.
For each causal set element vx (x ¼ 1; . . . ; p), we suppose

there exists a field operator �̂x such that

1: �̂x ¼ �̂y
x ; (21)

2: ½�̂x; �̂y� ¼ i�xy; (22)

3: i�w ¼ 0 ) Xp
x0¼1

wx0�̂x0 ¼ 0; (23)
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for x, y ¼ 1; . . . ; p. The first two conditions are natural
generalizations of the continuum case. The last condition
ensures that any linear combination of field operators that
commutes with all the field operators must be zero. By (15)
this is the analogue of imposing the Klein-Gordon equation
on the field operators.

From these field operators we can define new operators

â i :¼
Xp
x¼1

ðviÞx�̂x; âyi :¼ Xp
x¼1

ðuiÞx�̂x: (24)

for i ¼ 1; . . . ; s. They satisfy ðâyi Þy ¼ âi and

½âi; âj� ¼ vT
i i�vj ¼ ��ju

y
i vj ¼ 0; (25)

½âyi ; âyj � ¼ uTi i�uj ¼ �jv
y
i uj ¼ 0; (26)

½âi; âyj � ¼ vT
i i�uj ¼ �ju

y
i uj ¼ �j�ij; (27)

and can be interpreted as (unnormalized) creation and
annihilation operators.

The transformation can be inverted to give

�̂ x ¼
Xs
i¼1

ðuiÞxâi þ ðviÞxâyi (28)

[here it is important we imposed (23)].
We now define a vacuum state vector j0i 2 H by the

conditions that âij0i ¼ 0 for all i ¼ 1; . . . ; s and h0j0i ¼ 1.
This allows us to recognize that H is the Fock space

spanned by basis vectors ðây1 Þn1ðây2 Þn2 	 	 	 ðâys Þns j0i for in-
tegers ni � 0, i ¼ 1; . . . ; s.

The two-point function can be evaluated as

h0j�̂x�̂yj0i ¼
Xs
i¼1

Xs
j¼1

ðuiÞxðvjÞyh0jâiâyj j0i

¼ Xs
i¼1

Xs
j¼1

ðuiÞxðvjÞy�j�ij ¼ Qxy: (29)

We can now define the Feynman propagator by analogy
with (14). With time increasing from right to left we have

ðKFÞxy :¼ ih0jT�̂x�̂yj0i
:¼ ið �AxyQyx þ �AyxQxy þ �xyQxyÞ; (30)

where �A is the causal matrix for a linear extension of the
causal set and �xy is the Kronecker delta. In general there

are multiple different linear extensions which assign an
arbitrary order to pairs of unrelated elements. This arbitra-
riness does not affect KF because the field operators for
unrelated elements commute.

Observing that �Axyði�xyÞ ¼ ðiKRÞxy we have
�A xyQyx ¼ �AxyðQxy � i�xyÞ ¼ �AxyQxy � iðKRÞxy: (31)

Substituting this into (30) gives an alternative form

KF ¼ KR þ iQ; (32)

since �Axy þ �Ayx þ �xy ¼ 1 for all x, y ¼ 1; . . . ; p.

Since i� ¼ Q�Q� the imaginary part of Q is =ðQÞ ¼
�=2. Combining this with (32) and looking at the real and
imaginary parts of KF gives

<ðKFÞ ¼ KR � �

2
¼ KR þ KA

2
; (33)

=ðKFÞ ¼ <ðQÞ: (34)

Comparison with the continuum.—The causal set propa-
gators depend on the particular random causal set that is
sprinkled. By calculating their average value for differ-
ent sprinklings we can compare the causal set and contin-
uum propagators. To do this, first fix a finite causal interval
A 
 Md. Pick two points X, Y 2 A. Sprinkle a finite
causal set into A with density �. Almost surely this will
not contain X and Y so add X and Y to it to obtain a finite
causal set (C, �). For definiteness, label the causal set
element X as v1 and Y as v2.
We now calculate KR and KF for (C, �) and look at

ðKRÞ12 and ðKFÞ12, i.e., the propagator values for the pair

(X, Y). Let EðKðdÞ
R jX; Y;Md; �Þ denote the expected value

of ðKðdÞ
R Þ12 [and EðKFjX; Y;Md; �Þ the expected value of

ðKFÞ12] averaged over all causal sets sprinkled into
A 
 Md (with X and Y added in the manner described
and for a fixed density �). It was shown in [7] that

E ðKð2Þ
R jX; Y;M2; �Þ ¼ Gð2Þ

R ðY � XÞ; (35)

lim
�!1EðK

ð4Þ
R jX; Y;M4; �Þ ¼ Gð4Þ

R ðY � XÞ: (36)

Using these and (33) we have

<ðEðKFjX; Y;M2; �ÞÞ ¼ <½Gð2Þ
F ðY � XÞ�; (37)

lim
�!1<ðEðKFjX; Y;M4; �ÞÞ ¼ <½Gð4Þ

F ðY � XÞ�: (38)

That is, the real part of the expected value of KF is correct
forM2 and correct in the infinite density limit forM4 [12].
We can compare the imaginary parts ofKF andGF through
numerical simulations.
By using a computer to perform sprinkling into finite

regions of 1þ 1 and 3þ 1 Minkowski spacetime we can
compute KR, KA, i�, Q and KF for a range of sprinkling
densities and field masses. Plotting the real and imaginary
parts ofKF against the absolute value of the proper time for
causally related and spacelike separated pairs of sprinkled
points allows us to see if KF agrees with GF.
Simulations using standard linear algebra software on a

desktop computer give clear results for the 1þ 1 dimen-
sional case for causal sets with as few as 600 elements (see
Fig. 1). The agreement is very good provided 0 � m �ffiffiffiffi
�

p
. There is disagreement between the imaginary parts of

KF andGð2Þ
F as we take the field mass to zero but this seems
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to be related to the lack of a massless limit of =ðGð2Þ
F Þ.

There are also small deviations due to the calculation being
sprinkled into a finite region of Minkowski spacetime.
These ‘‘edge effects’’ get smaller if the results are only
plotted for pairs of points away from the edges of the
region.

In 3þ 1 dimensions the simulations are less clear. We
expect good agreement with the continuum for large �
[since the infinite density limit is needed in (36)] but larger
sprinklings are needed to investigate this.

Discussion.—The formalism provokes interesting ques-
tions about the eigenvectors ui, vi. They seem to be related
to linear combinations of positive and negative frequency
plane wave solutions of the Klein-Gordon equation.

Plotting the eigenvector values as a function of position
for causal sets sprinkled into M2 shows relatively smooth
oscillatory behavior for the eigenvectors associated with
large eigenvalues. They show some dependence on the
shape of the region into which the points are placed but

this dependence is lost when �iuiu
y
i is summed in the Q

and KF matrices (details to appear elsewhere).
Extending KF to infinite causal sets as well as further

investigating the behavior of KF for sprinklings intoM4 as
well as other conformally flat or curved spacetimes would
be of significant interest. Investigating the variance of KF

for different sprinkling densities is also important. The
propagator KR (and therefore KF) can be extended to
nonsprinkled causal sets ([7] Sec 4.2). This ensures both
KR and KF are relevant to a fundamental theory based only
on causal sets with no reference to Lorentzian manifolds or
sprinklings.
The work presented here opens the door to interacting

scalar field theories, scalar field phenomenology, the evalu-
ation of Feynman diagrams, S-matrices and scattering
amplitudes on a causal set. Extending the quantum field
theory to include interacting spinor and vector fields re-
mains to be done—advances here could lead to physical
predictions for matter on a causal set.
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FIG. 1 (color online). Plots of =ððKFÞxyÞ for pairs of sprinkled
points vx and vy in a single 600 element causal set generated by

sprinkling into a unit-volume causal interval in M2 and

=ðGð2Þ
F ðXÞÞ for X 2 M2.
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