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We study the emergence of a yield stress in dense suspensions of non-Brownian particles by combining

local velocity and concentration measurements using magnetic resonance imaging with macroscopic

rheometric experiments. We show that the competition between gravity and viscous stresses is at the

origin of the development of a yield stress in these systems at relatively low volume fractions. Moreover, it

is accompanied by a shear-banding phenomenon that is the signature of this competition. However, if the

system is carefully density matched, no yield stress is encountered until a volume fraction of 62:7� 0:3%.

DOI: 10.1103/PhysRevLett.103.178301 PACS numbers: 83.80.Hj, 45.70.Mg, 82.70.Kj

According to one of the standard textbooks on granular
materials [1], the processing of granular materials con-
sumes roughly 10% of all the energy consumed on this
planet. Consequently, the prediction of flow resistance of
granular materials is a matter of considerable importance.
The two simplest cases of granular materials are dry and
wet sand. The former has recently been studied in much
detail, and its flow behavior is by now well understood [2].

The other case, suspensions of (noncolloidal) granular
particles in Newtonian fluids (‘‘granular suspensions’’)
should a priori be simple systems as the only interactions
between the particles are hydrodynamic and contact forces.
However, they exhibit a very rich behavior: yield stress [2–
5], shear banding [4–6], shear thickening [7], normal
stresses [8,9], and shear-induced migration [5,10] that
remain incompletely understood.

Perhaps the most important issue is the correct determi-
nation of the yield stress, a minimum stress to enforce a
quastistatic flow. We thus probe the system in the limit of
vanishing shear rate, i.e., very close to the yield stress. The
determination of the yield stress is a matter of much current
interest, as it has large repercussions on our understanding
of complex fluid flows in general; the results presented here
in fact support a number of new general ideas about yield
stress fluids and shear banding [11].

For our granular suspensions, for vanishing flow speeds,
hydrodynamic interactions are expected to play no role and
the behavior of dry grains is recovered [3,4,12]. A fric-
tional yield stress �c ¼ ��N is then observed provided the
granular skeleton, of macroscopic friction coefficient �, is
subject to a normal stress �N [3,4,12]. However, this
predicts the absence of a yield stress without normal
forces, which is not what was observed experimentally,
e.g., in [4].

Another important question is the origin of yield stress
observed in rather loose suspensions, for low volume frac-
tions ranging from 55 to 60% [5]: what is the packing
density at which a yield stress emerges? Theoretically this
is expected to correspond to point J [13] i.e. to the density

at which the granular skeleton becomes so densely packed
that it can no longer flow. For frictionless granular mate-
rials this happens at a volume fraction of approximately
’ ¼ 64%, corresponding to random close packing [14]. In
suspensions, although some light has been shed on the role
of friction [14] the role of the interstitial fluid and of
contact lubrication remains an open question, and it is
not clear at which volume fraction a yield stress develops
in practice.
Equally puzzling is the observation of the coexistence

between sheared and unsheared zones, characteristic of
shear banding, during the viscous flows of such systems
[4,5,15]. It was observed that there exist a critical shear rate
below which no stable flows exist [4], which contradicts
the commonly accepted wisdom that shear banding is due
to heterogeneities in the stress field [11]. Shear-banding
due to the existence of a critical shear rate has only been
observed in thixotropic gels [8,11,16–18], and is not
a priori expected in an athermal granular system with
only hydrodynamic and contact forces.
In this Letter, we study the rheology of dense suspen-

sions of non-Brownian particles and show that most if not
all of the above problems disappear if one takes gravity
into account. We find that it is due to gravity that a yield
stress develops well below close packing.We also evidence
that the critical shear rate for shear banding arises naturally
as the results of the gravity and viscous stresses. And only
if the particles and solvent are very carefully density
matched, does a macroscopic rigidity develops very close
to (but at a significantly smaller value than) the maximum
random packing fraction of the granular matrix.
We study the local and global rheological behavior of a

dense suspension of noncolloidal spherical particles im-
mersed in a Newtonian fluid for 58%<’< 63%; most
representative results presented here are obtained at 60%.
We use polystyrene beads (diameter 40 �m, polydisper-
sity <5%, density 1:05 g � cm�3). Suspensions are pre-
pared by mixing the particles with aqueous solutions of
NaI to perfectly match solvent and particle densities; this
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also allows to tune the density difference. The error bar on
the density matching is of order 0:001 g � cm�3, which is
rather good compared to previous experiments [4]. For
most experiments presented, the solvent is denser than
the particles, and the particles cream rather than sediment.

Macroscopic rheometric experiments are performed
with a vane-in-cup geometry (inner radius Ri ¼
12:5 mm, outer Re ¼ 18:5 mm) on a Bohlin 200 rheom-
eter. MRI rheometry is performed in a wide-gap Couette
geometry (Ri ¼ 41:5 mm, Re ¼ 60 mm). Local velocity
and concentration profiles in the flowing sample were
obtained through techniques described in detail in [19];
’ can be obtained with an accuracy of 0.2% by measuring
the local density of protons from thewater [5]. The velocity
profiles can also be measured [19,20]. For all experiments,
in order to avoid slip at the walls, sandpaper is glued on the
walls; on the velocity profiles there is no observable slip.

The MRI velocity profiles reveal an important difference
between suspensions that are density matched and those
that are not (Fig. 1). The latter shows marked shear banding
for the lowest�, that is not present for the density-matched
system. Since the shear stress varies in the Couette cell as
�ðrÞ ¼ �ðRiÞR2

i =r
2, the transition between flow and no

flow directly demarcates the yield stress [16].
Importantly, the experiments also indicate the existence
of a critical shear rate: the velocity profile falls down
abruptly to 0 with a slope different from 0 and the inter-
face; i.e., there is a shear rate discontinuity between the
sheared and the unsheared zone. This defines the critical
shear rate _�c � ð0:05� 0:02Þ s�1 below which no stable
flow exists.

Our observations point out for the first time that a slight
density mismatch has most probably been at the origin of
all previous observations of yield stresses and shear band-
ing in granular suspensions. Sedimentation or creaming
may lead to the creation of a dense zone in which the
particles are sufficiently densely packed that a yield stress
emerges. This is confirmed by our direct MRI measure-
ments of the density profiles of the density matched and
mismatched systems (Fig. 2).

We observe that the density-matched system is perfectly
homogeneous, but for �� ¼ 0:15 g � cm�3 there is signifi-
cant creaming (under zero shear rate) with a velocity of the

order of 20 �m=s, leading to a material of 63% volume
fraction.
In the absence of flow there are no other interactions

between noncolloidal particles than contact interactions
and the existence of a yield stress can only be ascribed to
the formation of a jammed contact network: the yield stress
emerges around’ ¼ 63%. This directly shows that gravity
plays two roles: (i) it allows for the creation of this contact
network thanks to the creaming of the system; (ii) it pro-
vides the normal forces that are necessary to stabilize the
granular system. The latter observation solves the problem
of the observation of yield stresses without apparent nor-
mal forces [4]: the latter were in fact present due to a slight
density mismatch.
It turns out that when everything is flowing, the system

becomes homogeneous again: there is shear-induced re-
suspension of the particles [21] that creates normal forces
that in turn lead to a particle flux opposed to that of
creaming or sedimentation [6,9]. Therefore, in our system
the yield stress and critical shear rate are closely related,
and both find their origin in the gravitational forces. This
provides a theoretical limit for the emergence of a yield
stress, and also implies that shear banding appears when
normal stresses generated by the flow can no longer bal-
ance gravity forces. In dense suspensions, the normal
stresses are predicted to be of the same order of magnitude
and to diverge like the viscous shear stresses as the volume
fraction is increased [10]. The transition between the
sheared and unsheared zone should then correspond to a
simple balance between gravitational and viscous stresses:
� _� ¼ ��gR where � is the macroscopic viscosity of the
suspension. Interestingly, this analysis predicts that the
yield stress is accompanied by a shear-banding phenome-
non even in a homogeneous stress field, i.e., a critical shear
rate below which no flow is observed _�c ¼ ��gR=�, akin
to what is observed for thixotropic gels [8,11]. The critical
shear rate from the MRI is in very good agreement with the
simple theory we provide above. With � ¼ 1 Pa � s, the
macroscopically measured viscosity of the paste, we find
_�c ¼ 0:03 s�1. Note, moreover, that (i) the predicted 1=�
scaling of _�c is in agreement with the findings of [4] who
varied the interstitial liquid viscosity over 3 decades, and
(ii) that by varying �� we show that the �� scaling is also
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FIG. 1. Dimensionless velocity profiles for steady flows of a
60% suspension, at various rotational velocities �. (a) �� ¼ 0;
the dashed line is the theoretical velocity profile for a Newtonian
fluid. (b) With �� ¼ 0:15 g � cm�3.
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FIG. 2. (a) Radial concentration profile during flow for �� ¼
0:15 g � cm�3. Inset: Vertical concentration profile during flow
for �� ¼ 0:0 g � cm�3. (b) Time evolution of the concentration
under zero shear for the �� ¼ 0:15 g � cm�3 suspension.
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in agreement with the experimental results [Fig. 3(b)]. All
these observations provide strong evidence that shear
banding finds its origin in a competition between creaming
and shear-induced resuspension. The mechanism we pro-
pose is reminiscent of the one that drives the onset of
erosion of granular beds by water in rivers [13,21].

It also closely resembles what is observed for thixotropic
gels [22]; for these there is a competition between gel
formation at rest and destruction by flow that leads to
thixotropy [11]. This is mostly due to attractive interac-
tions that are the cause of gel formation and leads also to a
critical shear rate below which shear banding is observed
[8,11,17]. For the granular paste, the response is also
thixotropic due to the competition between creaming and
resuspension. It implies the existence of a bifurcation of
the viscosity: the material abruptly passes from a low
viscosity flowing state above a critical (yield) stress �c

to a jammed state below �c [11,17]. We thus study the
macroscopic shear rate in time when a constant stress is
applied. In Fig. 3(a), we indeed observe the viscosity
bifurcation: below a yield stress �c the viscosity diverges
(the material stops flowing) while it tends towards a low
finite value for stresses higher than �c; the shear rate is
then always higher than a critical value. The critical shear
rate _�c � ð0:13� 0:07Þ s�1 (error indicates reproducibil-
ity) measured here macroscopically is again consistent
with the critical shear rate from the MRI.

The bifurcation stress then corresponds to the effective
yield stress of the system, which consequently depends
both on time and on the density difference. However,
true jamming would pertain to the existence of a yield
stress for infinite time and no density difference. We there-
fore plot the time and density dependence of the yield
stress in Fig. 4. It follows, as expected from our consid-
erations above, that �t!1

c / ��. This shows that the yield
stress can actually be ascribed completely to the frictional
behavior of the granular matrix under normal stresses due
to gravity: once the material has settled down, there is a
contact network which has a (granular) frictional behavior
characterized by a friction coefficient �, the ratio of the
shear stress to the normal stress. The (frictional) yield
stress thus reads ���gz, leading to �t!1

c ¼ 1
2���gH,

with H the height of the cylinder of the Couette geometry.
In Fig. 4(a) we indeed find a straight line with a slope

corresponding to � � 0:48. The time evolution of the
macroscopic friction coefficient � is plotted in Fig. 4(b)
from which it is evident that the friction is close to zero
when the particles have had no time to sediment. This
indicates that there are no frictional contacts between the
particles: they are not touching. This ties in with recent
work on the jamming transition, where a discontinuous
jump from zero to a finite number of contacts happens at
the jamming transition [23].
The surprising conclusion from Fig. 4 is therefore

clearly that even a very dense suspension (60%) does not
have a true yield stress and is therefore not jammed. This
poses the question where the jamming transition actually
is. To answer this question, suspensions of different vol-
ume fraction were prepared and subjected to a very low
shear rate of 0:005 s�1. The resulting stresses and strains
were measured (Fig. 5). For concentrations up to 62.4%,
the suspension flows freely: there is no yield stress. At or
slightly above 62.7%, the suspensions have a yield stress:
the stress levels are very high, and initially a linear stress-
strain relation is observed, as for an elastic solid.
What is then the origin of the ‘‘true’’ yield stress for very

dense suspensions? The most likely origin for the emer-
gence of a yield stress for �� ¼ 0 is the dilatant behavior
of the granular material at high volume fractions. When the
density of the granular material is high enough, it needs to
dilate (Reynolds’ dilatancy) in order to flow; however this
is not always possible due to confinement by the fluid [7].
The effect of confinement can be evaluated: the typical
normal force exerted on the granular skeleton is due to
surface tension and is thus here of order �=R � 1000 Pa,
with � � 20 mNm�1 the surface tension of the suspend-
ing liquid. This would give a (frictional) yield stress of
order 100 to 1000 Pa (depending on �) in good agreement
with the measured shear stresses of Fig. 5; in fact the
plateau value of the stress at high strains is often taken as
a good measure of the yield stress [17]. This simple picture
predicts that the jamming transition in suspensions occurs
at the critical state density. For almost frictionless (�<
0:01) dry granular materials, this density was found to be
62:5� 0:5% [24] in excellent agreement with the value
found here. However, theoretically this density was re-
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FIG. 3. (a) Temporal evolution of the shear rate for different
applied shear stresses measured in a vane-cup Couette cell. in
suspension with �� ¼ 0:15 g � cm�3; (b) critical shear rate as a
function of ��.
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cently found to be equal to 63.9% for frictionless grains
[14], and decreases very quickly when the intergrain fric-
tion is increased [24]. From simulations [24], a 62.7%
volume fraction would correspond to a very low intergrain
friction coefficient � ¼ 0:05, pointing out the important
lubricating role of the interstitial fluid. More generally, for
frictional granular systems, rigid packings can occur over a
range of packing fractions, from random close packing
(around 64%) to random loose packing (around 54%).
The particular packing fraction achieved depends on the
protocol used to prepare the packing [25]. It is therefore
noteworthy is that the two very different protocols we use
(creaming and direct preparation, Figs. 2(b) and 5] both
lead (to within the experimental error) to the same volume
fraction for which a yield stress emerges. We have no
explanation for why this happens at very similar volume
fractions.

In conclusion, we have shown that the competition be-
tween gravity and viscous stresses is at the origin of the de-
velopment of a dynamic yield stress and of shear banding
in granular suspensions at relatively low volume fractions.
However, when the gravity forces play no role, we have
shown that no yield stress is encountered until a volume
fraction of 62:7� 0:3%, that is significantly lower than the
random close packing. The simple mechanism at play here
for shear banding may be seen more generally as a com-
petition between structuration and destructuration, a phe-
nomenon which seems to be a hallmark of systems that ex-
hibit shear banding [8,16–18]; our system may then be a
good simple model system for tests of shear-banding
pictures.

Interestingly, our results may also be connected to recent
observations in hard-sphere colloidal glasses. It is gener-
ally assumed that the glass transition in these systems
happens at a volume fraction of 58% [26]. However, recent
experiments in space were not able to see a glass transition
at all around these volume fractions [27], very similarly to
what we see here for a system that is only different from the
hard-sphere colloids in the sense that there is no Brownian
motion. In addition, for hard-sphere colloids, recent experi-
ments using confocal microscopy [27] report an acceler-
ated aging under gravity that is very much compatible with
the creaming or sedimentation observed here. It may thus

very well be that the true ‘‘jamming’’ (glass transition)
point of colloidal hard spheres is close to the jamming
point of noncolloidal hard spheres reported here.
LPS de l’ENS is UMR 8550 of the CNRS.
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