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In the experiment on superfluid transport in solid 4He [Phys. Rev. Lett. 100, 235301 (2008)], Ray and

Hallock observed an anomalously large isochoric compressibility: the supersolid samples demonstrated a

significant and apparently spatially uniform response of density and pressure to chemical potential,

applied locally through Vycor ‘‘electrodes.’’ We propose that the effect is due to superclimb: edge

dislocations can climb because of mass transport along superfluid cores. We corroborate the scenario by

ab initio simulations of an edge dislocation in solid 4He at T ¼ 0:5 K. We argue that at low temperature

the effect must be suppressed due to a crossover to the smooth dislocation.
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At present, the experimental search for a supersolid in
4He proposed in Refs. [1] focuses mostly on torsional
oscillator experiments [2], and on attempts to detect pres-
sure driven nonplastic flow [3]. Direct superflow through
solid 4He has been observed only in the experiment by Ray
and Hallock [4,5]. The absence of flow at temperatures
above T � 0:6 K is a strong argument against the liquid
channels scenario [6,7] and in favor of superfluidity along
dislocation cores or grain boundaries. Theoretically, a
superfluid dislocation network can manifest itself as a
genuine superfluid or be in the Shevchenko state [8],
characterized by anomalously low viscosity (due to phase
slips) mimicking superfluidity even at relatively high tem-
peratures, T > 0:1 K, well above the actual transition de-
termined by the dislocation density.

The ‘‘UMass sandwich’’ setup of Refs. [4,5] differs from
the pressure driven cells [3] by feeding superfluid 4He into
the crystal through Vycor ‘‘electrodes.’’ This means that
the chemical potential� is the physical quantity relevant to
the external perturbation applied to the crystal. An insulat-
ing (i.e., nonsupersolid) crystal has to be isochorically
incompressible: � � ðdn=d�ÞV ¼ 0; that is, its density n
should demonstrate no response to infinitesimal, quasi-
static changes of� [9]. As long as the creation of a vacancy
or interstitial is forbidden by finite energy gap, the only
way the density of a crystal can react dynamically to a
small change in the chemical potential, ��, is by creating
or removing crystalline layers. This requires nucleation
times exponentially large in j��j�1. Thus, at temperatures
T much smaller than the vacancy or interstitial gaps, �
associated with thermally excited vacancies and intersti-
tials is exponentially small. Consistent with these argu-
ments, all nonsupersolid samples of Refs. [4,5] have
� ¼ 0: two pressure gauges monitoring the solid showed
no response to a change in � by the Vycor electrodes.

Supersolids have no vacancy (interstitial) gap [10] and
are thus genuinely isochorically compressible: � � 0. One
may argue that � should scale linearly with the superfluid
fraction �s since both are due to zero-point vacancies
(interstitials). Given the extremely low value of �s &
10�5 following from estimates based on the observed
supercritical flux (see Refs. [4,5] for more details), one
does not expect a noticeable �. However, the observed
density or pressure response to � was by several orders
of magnitude larger than expected. We refer to this as the
effect of giant isochoric compressibility. Remarkably, the
response was apparently spatially homogeneous, since two
pressure gauges attached to two ends of the solid typically
showed equal variations (but different absolute values;
most samples were characterized by a static pressure gra-
dient) [4,5].
In this Letter, we argue that the microscopic phenome-

non behind the effect of giant isochoric compressibility is
the superclimb of superfluid edge dislocations, that is,
climb controlled by superfluid flow along their cores. Our
idea is that significant and spatially uniform mass accumu-
lation in the bulk of supersolid 4He is due to the synergy
between (i) the presence of a superfluid network capable
of delivering 4He atoms from Vycor electrodes to distant
bulk regions and (ii) the presence of edge dislocations,
whose superclimb is responsible for the density or pressure
change.
We corroborate our scenario by ab initio simula-

tions showing that edge dislocation with Burgers vector
along the hcp C axis has superfluid core (cf. superfluidity
in the core of a screw dislocation [11]), and that it can
climb in response to ��. We argue that at low T the climb
must be suppressed due to a crossover from a rough to a
smooth dislocation [12]. This prediction is a manifesta-
tion of the structural evolution of dislocations with tem-
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perature, and is important for experimental validation
of the scenario. While superflow is a necessary condition
for superclimb, the dislocation must also have a finite
density of jogs to allow for thresholdless climb.
Otherwise, a finite gap � for creating jogs will protect
the dislocation from shifting significantly in response to
small ��.

The effect of giant isochoric compressibility is one of
the novel properties emerging in the ‘‘quantum metal-
lurgy’’ [13] context. These properties have long been dis-
cussed in the past; for example, it was speculated that
quantum dislocations should be characterized by ‘‘thick’’
(roughened) cores due to zero-point motion [14]. An im-
portant role of quantum roughening of dislocations in the
torsional oscillator response has also been proposed in
Refs. [15,16]. Superclimb is a quantum analog of classical
high-T climb due to thermally activated flux of vacancies
toward, away or along the cores (pipe diffusion) [17] which
adds (removes) atoms to (from) the extra plane forming the
edge dislocation, so that the dislocation core shifts along
the extra-plane direction. Obviously, at low T, the activated
mass flow is exponentially suppressed and quickly be-
comes negligible.

Dislocations can also glide which requires no mass
influx. In Ref. [12] it was shown that gliding dislocations
are smooth at T ¼ 0 because Coulomb-type interactions
between shape fluctuations [18,19] induce an energy gap
�glide with respect to creating a pair of kinks in Peierls

potential. Hence, thresholdless glide of a dislocation can
effectively occur only at T comparable with �glide. This

gap is also related to shear modulus stiffening at low T
[20]. Similarly, dislocations have a gap � for creating a
pair of jogs at T ¼ 0, which leads to a suppression of climb
(and �) at low T. The values of � can be quite different
from �glide because the jog-antijog deconfinement couples

to fluctuations of the superfluid density leading to an addi-
tional mechanism for the gap formation.

Model of climbing superfluid dislocation.—We intro-
duce a coarse-grained description of an edge dislocation
with superfluid core oriented along the X axis in terms of
the core displacement yðx; �Þ along the Y axis (in the
climbing direction), perpendicular to the Burgers vector
which is along the Z axis. We assume small gradients and
large displacements compared to the lattice spacing. Then,
a coarse-grained density variation �nðx; tÞ translates di-
rectly into a coarse-grained variations �yðx; tÞ / �nðx; tÞ.
The proportionality coefficient is purely geometrical: add-
ing one atom to the edge results in its displacement by a
lattice period in the climb direction �yðx; tÞ ¼ a0 and also
in a density change �nðx; tÞ ¼ 1=a, where a is the length of
the unit cell along the core. Thus, �nðx; tÞ ¼ ��yðx; tÞwith
� � 1=aa0. This relation implies that for a superfluid dis-
location the core displacement �y is the conjugate variable
to the superfluid phase ’. The combined coarse-grained
low-energy effective action in the imaginary time descrip-
tion reads (@ ¼ 1)

S ¼
Z �

0
d�

Z
dx½�i�y _’þ ð�s=2Þð@x’Þ2 ���y� þ Sd;

(1)

where the purely dislocation part of the action, Sd, is taken
in the form of the Granato-Lücke string subject to Peierls
potential [19,21]:

Sd ¼
Z �

0
d�

Z
dx

�
n1v

2
d

2
ð@xyÞ2 � u cos

�
2�y

a0

��
; (2)

with n1 being the linear mass density of the core, vd

standing for speed of sound along the string determined
by shear modulus G: v2

d � G=n1, and u denoting the

strength of Peierls potential. In Eq. (2), the kinetic energy
/ _y2 is neglected in the low-energy limit under the con-
sideration. Full quantum mechanical description of the
system based on calculating the partition functionR
DyD’ expð�SÞ in line with the approach of Ref. [12]

will be presented elsewhere.
Apart from the Peierls term / u [not to be confused

with the sine-Gordon term where the argument would
be /Rx yðx0Þdx0], the quantized action (1) and (2) is a
standard harmonic (1þ 1)-dimensional action. A
renormalization-group analysis, similar to the one given
in Ref. [12], shows that, at T ¼ 0, the Peierls term has
scaling dimension dim½u� ¼ 2 regardless of the parameters
of the system, even if the long-range deformation potential
forces are ignored. This means that the Peierls barrier is
relevant at T ¼ 0 and always leads to a finite gap � for the
climb motion; i.e., the dislocation in its ground state is
smooth. Thus, the cosine term can be expanded in powers
of y around some equilibrium position ym ¼ ma0, m ¼
0;�1;�2; . . . , and the gradient in the action (2) can be
ignored in the low-energy limit. This reduces (1) to the
standard 1D superfluid action [22]

S1 ¼
Z �

0
d�

Z
dx

�
�i�y _’þ �s

2
ð@x’Þ2 ���yþ g

2
y2
�
;

(3)

with g ¼ uð2�Þ2=a02. This action describes superfluidity
with speed of sound v1 ¼ ffiffiffiffiffiffiffiffi

�sg
p

=� / ffiffiffiffiffiffiffiffi
�su

p
with, practi-

cally, no climb response to ��: �y ¼ ���=g.
With increasing T, thermally excited jogs and kinks

render Peierls potential less and less relevant, so that
eventually it can be ignored. In this limit, the dislocation
becomes rough, that is, similar to a free string [21], and the
spatial gradient in Eq. (2) should be taken into account.
The effective action (1) then becomes

S2 ¼
Z �

0
d�

Z
dx

�
� i�y _’þ �s

2
ð@x’Þ2

þ n1v
2
d

2
ð@xyÞ2 ���y

�
: (4)

Equation (4) predicts an extremely strong quasistatic climb
response: @2x�y / ��� determined by the length of a free
dislocation segment L (the crosslinking distance in the
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network), so that a typical displacement �y / L2��. This
implies that the resulting specific compressibility is inde-
pendent of the dislocation density �1=L2, provided the
network is uniform over the whole sample. Indeed, the
added amount of atoms per each ‘‘elementary’’ cube of
the side L is �aL�y / L3��. Thus, the added fraction of
atoms per unit volume is independent of L.

The superfluid component also demonstrates an anoma-
lous behavior: small oscillations obey

€’� 	@4x’ ¼ 0; 	 � �sn1v
2
d

�2
; (5)

meaning that the spectrum of superfluid excitations is not
soundlike anymore. It is described by a quadratic disper-
sion ! ¼ ffiffiffiffi

	
p

q2, where q is the momentum along the

dislocation line. Here we point out two qualitative predic-
tions of the model (1) and (2): (i) suppression of the climb
at T <�, and (ii) dramatic softening of superfluid phonons
at T >�.

Numerical results.—Our ab initio Monte Carlo (MC)
simulations were based on the worm algorithm [23]. The
most important numerical finding is that edge dislocations
with Burgers along the hcp axis have superfluid cores in
solid 4He. Our example is based on the dislocation with the
core along the X axis. Figures 1 and 2 show snapshots of
atomic positions in a typical MC configuration, along C
axis and along the core. Particles outside the circle, Fig. 2,
were pinned to their classical lattice positions and provided
boundary conditions for the simulation cell. Since the hcp
structure has two atoms in the unit cell, two extra half-
planes are involved. For studied dislocation this leads to its
splitting into two partials with the fcc fault forming in
between [17]. The splitting is so large that the fault does
not fit the simulation cell—one of the partials has moved
all the way to the cell boundary. A direct simulation of the
fcc fault yielded an unmeasurably small (within our accu-

racy) fault energy<0:1 K=atom, meaning that the splitting
(proportional to the inverse of the fault energy) is indeed

expected to be as large as �150–300 �A. Hence, physical
properties of both partials are essentially independent from
each other.
Under these circumstances we performed extensive

simulations of a single partial attached to the fault. The
rectangular simulation cell contained from 600 to 3400
particles with periodic boundary conditions along the core.
In perpendicular directions a boundary of pinned 4He
atoms surrounding a cylinder of radius R provided the
necessary boundary conditions for the simulated sample
of solid 4He containing the partial dislocation at the center
and the fault extending in the positive Y-direction.
Depending on R, the number of actually simulated parti-
cles varied from 270 to 1700. Superfluid properties were
detected by observing winding exchange cycles along the
cylinder axis (X axis). The core response to � has been
studied by tracing the position of the maximum Yð�Þ of the
columnar superfluid density map in the (Y, Z) plane [24].
The core position exhibited strong continuous response

to variations of �. The slope dY=d� was larger in bigger
cells indicating that at the simulated temperature T ¼
0:5 K it is controlled by the image forces provided by the
boundary conditions. At fixed �, the configuration-to-
configuration fluctuations of the core position were as large
as several unit cells. Remarkably, the exchange-cycle map
does not show any visible modulation with the lattice
period in the Y direction (while the structure in the
Z direction is clearly seen), see Fig. 3, meaning that the
core is loosing its crystalline structure locally and the
Peierls potential in the climb direction is negligible under
the simulated conditions. A systematic numeric study of
the Peierls gap effects emerging at much lower tempera-
tures and in larger system sizes remains a major computa-
tional challenge.

FIG. 1 (color online). Columnar view of a typical MC con-
figuration along the C axis: filled red dots show atomic positions;
open blue circles indicate an ideal lattice; vertical solid green
lines mark positions of the partial cores. The fcc fault is between
these two lines. The superfluidity occurs along the green lines.

FIG. 2 (color online). Columnar view of the same MC con-
figuration (as in Fig. 1) along the cylinder axis. The circle marks
the simulation cell where particle positions have been updated.
The superclimb occurs in the ‘‘horizontal’’ plane. Green stars
mark positions of the two partials.
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Crucial data can be obtained experimentally with the
‘‘UMass sandwich’’ setup, that potentially allows one to
work at T of few tens of mK [25]. Since the quantity of
interest is the isochoric compressibility (as a function of
T), one can use the superfluid syringe experimental proto-
col, when both Vycor electrodes are being operated at one
and the same chemical potential and are used exclusively
to inject atoms into the solid, rather than to induce a dc
flow. Such measurements near 400 mK have been already
done [26].

Summarizing, we present strong ab initio evidence and a
coarse-grained analytic description of the edge dislocation
climbing in solid 4He, assisted by superfluidity of its core.
This phenomenon yields a natural microscopic interpreta-
tion for the effect of giant isochoric compressibility ac-
companying superflow in the experiment by Ray and
Hallock [4,5]. Theoretically, we argued that at low T, the
superclimb, and, correspondingly, the effect of giant iso-
choric compressibility, must be suppressed due to a cross-
over to a smooth dislocation. Experimental observation of
the suppression, feasible within the ‘‘UMass sandwich’’
setup, might yield strong support for the proposed scenario
bridging ‘‘quantum metallurgy’’ and supersolidity. The
superclimb effect can also lead to high mobility of small
dislocation loops (with Burgers vectors along C axis) made
of one partial surrounding an fcc fault. Such loops could be
plenty in real samples (cf. [17]), and implications of their
presence are yet to be investigated.
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FIG. 3 (color online). A columnar snapshot of atomic positions
(open red dots) in the vicinity of the partial core (at the center)
superimposed with the map (solid blue dots) of winding ex-
change cycles responsible for superfluid properties along the
core, X axis. Note that (i) the map extends over several unit cells
(�3:67 �A), and (ii) it has no visible structure in the Y direction,
implying negligibly small Peierls potential for climb at the
simulated temperature.
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