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We report theoretical and experimental results on 4-wave capillary wave turbulence. A system

consisting of two immiscible and incompressible fluids of the same density can be written in a

Hamiltonian way for the conjugated pair (�, �). Adding the symmetry z ! �z, the set of capillary

waves display a Kolmogorov-Zakharov spectrum k�4 in wave vector space and f�8=3 in the frequency

domain. The wave system is studied experimentally with two immiscible fluids of almost equal densities

(water and silicon oil) where the capillary surface waves are excited by a low-frequency random forcing.

The probability density function of the local wave amplitude shows a quasi-Gaussian behavior and the

power spectral density is shows a power-law behavior in frequency with a slope of�2:75. Theoretical and

experimental results are in fairly good agreement with each other.
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Introduction.—Wave turbulence [1] deals with a set of
nonlinear random waves in a dispersive medium that,
although forced far from thermodynamic equilibrium,
can be described statistically. This description is done by
means of a kinetic equation for the spectral density distri-
bution nk in k (the wave vector) which evolves through
resonant interactions of N waves. In addition to the
equilibrium solutions represented by Rayleigh-Jeans dis-
tributions, the kinetic equation can display stationary
power-law nonequilibrium solutions nk � k��, with jkj ¼
k and �> 0, called Kolmogorov-Zakharov (KZ) spectra
describing the energy exchange (or other conserved quan-
tities) between large and small scales. KZ spectra have
been predicted theoretically and observed numerically and
experimentally in systems such as bending waves in elastic
sheets [2,3], Alfvén waves in plasma [4], spin waves in
solids [5], and gravity waves in fluids [6–9], to name a few
examples. In all these examples, although the theoretical
description depends on several constraints (negligible vis-
cosities, density contrasts, aspect ratios, etc. [1,10]), ex-
perimental and numerical results corroborate the
theoretical prediction of the appearance of power-law non-
equilibrium spectra. Still, there are certain features that are
yet to be studied and compared among theory, experiments,
and numerics, for instance, the non-Gaussianity of the
wave amplitudes [11], the nature and existence of inter-
mittency in a wave system [12,13], the role of symmetries
and dissipation in the wave interactions [14,15] or the
deviations of the exponent � from its theoretical value.

In this Letter we focus on capillary wave turbulence
[16–18] and the effect of symmetries in wave interactions.
We study theoretically and experimentally the statistical
properties of random waves at the interface between two
immiscible and incompressible deep fluids of equal den-
sities (�1 and �2) and depths (h1 and h2). Because of these
facts the symmetry z ! �z is forced on the system: the
typical 3-wave capillary wave turbulence breaks down and

a four-wave resonant interaction appears as the leading
order perturbation. We discuss the effect of this symmetry
on the nonlinear type of wave interaction and on the KZ
spectrum of the wave amplitude. We compare the theoreti-
cal prediction with the experimental measurement of the
power spectral density (PSD) of the local wave amplitude
at a water-oil interface in the limit of the Atwood number
A ¼ ð�1 � �2Þ=ð�1 þ �2Þ ! 0. Also, the computed
probability density function (PDF) for the excited surface
wave amplitude shows a highly symmetric quasi-Gaussian
shape. The level of agreement between theoretical and
experimental results stresses the fact that wave turbulence
is a robust phenomenon for nonlinear capillary waves.
Theoretical study.—Let us study the system of potential

flows of two incompressible and immiscible fluids in a box
of height 2h ¼ h1 þ h2, where �ðr ¼ ðx; yÞ; tÞ corre-
sponds to the surface elevation between them, �1 is the
density of the lower fluid (�h1 < z < �), �2 the density of
the upper fluid (�< z < h2), with �1 > �2 and � the
surface tension coefficient. The flows are defined by the
velocity potentials �1ðr; z; tÞ in the lower fluid and
�2ðr; z; tÞ in the upper fluid with r�1 ¼ v1, r�2 ¼ v2.
It is possible to prove that the dynamics of the interface has
a Hamiltonian structure [10,19], i.e.,
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where ? correspond to the r coordinates. It is easy to see
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that the Hamiltonian corresponds precisely to the sum
of the kinetic energy K (upper line) and potential
energy U (lower line) of the system. The system is also
constrained to the boundary conditions @z�1jz¼�h1 ¼
@z�2jz¼h2 ¼ 0 (zero normal velocity at the upper

and lower walls), ½ðv2?r?Þ�ðrÞ � v2z�z¼� ¼
½ðv1?r?Þ�ðrÞ � v1z�z¼� (continuity of the normal veloc-

ity at the interface) and the incompressibility conditions
r2�1 ¼ r2�2 ¼ 0. A formal expression can be found for
the Hamiltonian [20]. The original work was presented for
the 2D case, but can be easily extended for the 3D case.
The kinetic energy can be expressed as

K ¼ 1

2

Z
�Ĝ2ð�Þ½�2Ĝ1ð�Þ þ �1Ĝ2ð�Þ��1Ĝ1ð�Þ�dr;

(3)

where Ĝ1ð�Þ, Ĝ2ð�Þ are the Dirichelet-Neumann operators
for the fluid domain �h1 < z < �ðrÞ and �ðrÞ< z < h2,

respectively, defined by Ĝið�Þ�iðr; �ðrÞÞ ¼ ð�1Þi �
½rr�irr�ðrÞ � @�i

@z �z¼�. In 3D systems it does not seem

possible to write an explicit Hamiltonian in terms of � and
�. This problem is bypassed by using the small angle
approximation to write the Hamiltonian as an infinite
Fourier series in k space [1,7,17]. In terms of the operators

Ĝ1ð�Þ, Ĝ2ð�Þ, it corresponds to find an asymptotic series in
term of the small parameter k�0 � 1, with �0 the charac-
teristic surface elevation. Adding the symmetry z ! �z to
the initial problem (in this case by imposing equal depth
h1 ¼ h2 ¼ h and density �1 ¼ �2 ¼ �) the expansion
naturally needs to satisfy this constrain. Therefore, the
order of the nonlinearity increases from N ¼ 3 to 4, and
also the system becomes gravity free. In the Hamiltonian
expansion H ¼ H2 þH4 . . . , one gets

H2 ¼ 1

2

Z �
1

2�
k tanh½kh��kk��k þ �k2�k��k

�
dk;

H4 ¼
Z
ðTð1Þ

1;2;3;4�k1�k2�k3�k4 þ Tð2Þ
1;2;3;4�k1�k2�k3�k4Þ

� �ð2Þðk1 þ k2 þ k3 þ k4Þdk1234; (4)

whereH3 � 0, which comes explicitly from the Dirichelet-
Neumann operator expansion [20]. Physically, the z ! �z
symmetry is not merely imposed by eliminating gravity
in the limit A ! 0, but also by imposing equal depth of
both fluids, making the capillary surface waves unable to
distinguish up from down in the vertical direction. Even
more, using the same symmetry arguments, every odd
term in the expansion of H will be zero in this limit. This
fact is confirmed by explicitly calculating the transfer

matrixes Tð1Þ
1;2;3;4 and Tð2Þ

1;2;3;4, which depend on four wave

vectors [21].
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is the dispersion relation. From the

Hamiltonian evolution of As
k, a hierarchy of linear equa-

tions for the averaged moments (hAs1
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k2
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As2
k2
A
s3
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and so forth) is written. An asymptotic closure of these
equations can be given when the system is regarded as
homogeneous in space and there is separation of linear and
nonlinear time scales due to the weak nonlinear inter-
actions [13]. This closure is given by the evolution
of the wave spectrum nk, that comes from the second

order moment hAk1A
�
k2
i ¼ nk1�

ð2Þðk1 þ k2Þ. It satisfies a

Boltzmann-type kinetic equation describing the slow evo-
lution of the wave spectrum through a four-wave resonant
process:

d
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� �ð!k þ s1!k1 þ s2!k2 þ s3!k3Þ�ð2Þðkþ k1 þ k2 þ k3Þdk123; (5)

where L�s1;s2;s3;s4
�k1;k2;k3;k4

¼�is1
1
24P 1234½s1s2Xk3

Xk1

Xk4

Xk2

Tð1Þ
1;2;3;4�

Xk1Xk2Xk3Xk4T
ð2Þ
1;2;3;4� is the scattering matrix, P 1234½	� is

the sum over the 12 possible permutations of 1, 2, 3 , and 4.
With this kinetic equation, we seek isotropic nonequilib-
rium distribution solutions [22]. Despite some differences
with the usual kinetic equation, the method of Zakharov
can be applied here as in [2]. In the deep fluid limit (hk !
1), one finds that the scattering matrix L and frequency

!k ¼
ffiffiffiffiffiffiffiffiffiffi
�
2� k

3
q

of capillary waves are homogenous functions

of degree � ¼ 3 and 	 ¼ 3=2, respectively, i.e.,
Ls;s1;s2;s3

k;
k1;
k2;
k3

¼ 
�Ls;s1;s2;s3
k;k1;k2;k3

and !
k ¼ 
	!k. Looking

for a power-law solution of the form nk ¼ �k�� with �
a constant, it is possible to perform the Zakharov trans-

formation over the right-hand side of Eq. (5), called colli-
sional term [22]. In such a way one gets a stationary out-of-
equilibrium spectrum with � ¼ 4 that represents a con-
stant energy flux solution. If we consider a flux of energy
per unit of mass P through the big scales towards the small
scales, one can find an explicit expression for � that leads
to nk ¼ CP1=3�k�4. C is a pure real number that depends
on some integrals directly related with the collisional term
that can, in principle, be computed numerically. No inverse
cascade is allowed in this system due to the 3 $ 1 wave
interaction process, as it was already reported in [2]. As we
are considering a statistically homogenous system in
space, it is natural to compute the moments by taking space
averages. Nevertheless, from the experimental point of
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view, taking space averages is quite a difficult task. On the
contrary, time averages of local properties are much more
accessible. It is possible to relate both for stationary solu-
tions in the linear regime as nTð!Þd! / nðkÞkd�1dk,
where nTð!Þ is the time averaged wave number, in fre-
quency domain. Using !k of capillary waves one gets
nTð!Þ / P1=3!�7=3. Thus we obtain the spectrum for local
surface elevation hj�!j2iT / P1=3!�8=3.

Experimental study.—A Plexiglas container (height h ¼
60 mm, length l ¼ 100 mm, depth d ¼ 80 mm) is half
filled with distilled water (density �1 ¼ 1:00 g=cm3,
kinematic viscosity �1 ¼ 0:01 cm2=s) and half filled with
silicon oil (PDMS AB112153 from ABCR, density �2 ¼
0:93 g=cm3, kinematic viscosity �2 ¼ 0:07 cm2=s). The
interfacial tension coefficient �� 30 mN=m [23]. The
equilibrium interface position is measured at 35 mm.
Capillary surface waves are excited by a wave maker that
plunges completely into the upper fluid, oscillating verti-
cally. The wave maker is driven by an electromagnetic
vibration exciter via a power amplifier. The random forc-
ing, supplied by the source output of a dynamical spectrum
analyzer, is low-pass filtered between 0� fdriv ¼ 3 Hz.
The excited surface wave amplitude � is locally measured
4 cm away from the container walls by means of a wire
capacitive gauge of 0.1 mm in diameter. The measured
capacitive fluctuations are proportional to the local wave
amplitude ones. They are sampled at 800 Hz during 300 s,
and low-pass filtered numerically at 500 Hz to avoid
aliasing. We have checked the wire probe’s linear response
in � by changing fluid depths and its constant frequency
response (in magnitude) in a frequency band between 1 to
100 Hz. A noteworthy difference between our setup and
the one of [8] is that in our case both dielectrics are liquids
of similar densities and similar viscosities.

With the acquired data, the probability distribution func-
tion (PDF) of �, normalized by its rms fluctuations ��, is

calculated, as shown in Fig. 1 (main). Notice that h�i � 0
and that its fluctuations are close to being symmetric with
respect to � ¼ 0. No exponential tails are found. The kur-
tosis is slightly larger than 3, but not large enough to ex-
clude Gaussianity. For comparison, we show in Fig. 1 (in-
set) the PDF of �=�� when gravity-capillary wave turbu-

lence develops. We see a clear asymmetric tail (positive
skewness) as it is shown elsewhere [8]. This contrast is a
clear indication of the imposed symmetry in the system:
there is no external field (gravity) that breaks the z ! �z
parity so the surface perturbations are symmetric with
respect to � ¼ 0. It is unclear if the fluctuations are indeed
Gaussian: resolution of large events could not be made in
the present experimental setup. Thewave system has a very
low Atwood number A ¼ ð�1 � �2Þ=ð�1 þ �2Þ ’ 0:04, re-
ducing the effective gravity drastically. One finds that in

this system the capillary length lc ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�=gð�1 þ �2Þ

p
where the crossover from gravity to capillary regime takes
place is an order of magnitude larger than in a liquid-air
interface problem [24]. The frequency crossover between

gravity and capillary regimes fc ¼ !c=2� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ag=2lc

p
will be obtained at a frequency close to 3–4 Hz. Therefore,
when the frequency cutoff of the forcing is larger than fc,
the only KZ-type spectrum we can observe is the capillary
one.
In Fig. 2 we show both the pure capillary A ’ 0:04

(main) and the gravity-capillary A ’ 1 (inset) spectra. For
pure capillary waves, as the forcing amplitude is increased,
low-frequency normal modes and harmonics of fdriv dis-
appear and a power-law spectrum develops. Only one
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FIG. 1 (color online). Probability density function (PDF) of
the normalized local wave amplitude �=�� at the interface of

two immiscible fluids with A ’ 0:04 (full line) and a parabolic fit
(dashed line). Inset: PDF of �=�� at the interface of a water-air

interface for A ¼ 1 (full line) and a parabolic fit (dashed line).
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FIG. 2 (color online). Power spectral densities (PSD) of the
local wave amplitude � at the interface of two immiscible fluids
with A ’ 0:04 (full line) for low (bottom) and high (top) forcing
amplitudes. Best fit slope�2:75 (dashed line). Inset: PSD of � at
a water-air interface for A ¼ 1 (full line) and best fit KZ spectra
(dashed line) for gravity (�5:35) and capillary (�2:52) waves.
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scale-invariant spectrum with slope �2:75� 0:05 appears
in the capillary-driven transparency window (for frequen-
cies larger than the characteristic frequencies of the broad-
band forcing), which is within the experimental error from

the theoretical f�8=3. In this regime, no cusps over the
wave crests were observed, which sustains the assumption
k�0 � 1 and eliminates the possibility of singularities
polluting the spectral content of the signal. The gravity-
capillary spectra of Fig. 2 (inset) is calculated from the
local elevation of surface waves when the lighter fluid
(PDMS) is removed. Waves are excited using a wavemaker
plunging in water driven by a low-frequency (fdriv ¼
3 Hz) random forcing similar to [8,12]. Both gravity
f�5:35 and capillary f�2:52 wave spectra are within the
experimental range of [8].

Conclusions.—In this Letter we develop a wave turbu-
lence approach for the interface fluctuations between two
immiscible and incompressible fluids in the limiting case
of equal depths and A ! 0. A 4-wave capillary wave
turbulence is found due to an imposed spatial symmetry,
where the theoretical wave spectrum of the amplitude

fluctuations behaves as f�8=3 (k�4) in frequency (wave
vector) domain that represents a stationary energy cascade.
Our theoretical predictions are supported by experimental
results and data from which we have computed the PDF
and PSD of the local amplitude fluctuations � at the inter-
face of an oil-water mixture. The PDF has a Gaussian form,
and no exponential tails where found [8]. The PSD shows a
power-law behavior �f�2:75 within experimental error of
the expected theoretical slope for the 4-wave interaction
process. It must be noticed that the computed spectrum is

also within experimental error of the theoretical f�17=6 of
the 3-wave interaction process. Because the difference
between slopes of both spectra is small and since the
theoretical conditions of this regime are not fully satisfied,
the PSD alone does not guarantee a pure 4-wave regime
and possibly 3-wave processes may not be completely
suppressed. Nevertheless, their effects should be small in
magnitude. For instance, a small difference in depth in-
troduces a negligible correction in the limit kh 
 1, be-
cause of the exponential dependence in kh. The effect of
the small but nonzero Atwood number will be discussed
elsewhere, but in principle, it can always be discarded in a
frequency region of the spectrum. Despite the small dif-
ference between the 3-waves and 4-waves exponents, the
highly symmetric PDF gives strong evidence of the z !
�z symmetry as it has been observed in other systems [3]
and shows that the asymmetry associated with the gravity-
capillary regime is demonstrably suppressed. These ex-
perimental results give strong evidence how the system is
tending towards a 4-wave capillary wave turbulence re-
gime described by our theoretical developments.
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