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We consider the familiar problem of a bump, or ruck, in a rug. Under lateral compression, a rug bends to

form a ruck—a localized region in which it is no longer in contact with the floor. We show that when the

external force that created the ruck is removed, the ruck flattens out unless the initial compression is

greater than a critical value, which we determine. We also study the inertial motion of a ruck that is

generated when one end of the rug is moved rapidly. We show that the equations of motion admit a

traveling ruck solution for which a linear combination of the tension and kinetic energy is determined by

the ruck size. We confirm these findings experimentally. We end by discussing the potential implications

of our work for the analogous propagation of localized slip pulses in the sliding of two bodies in contact.
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As well as being something of an annoyance in everyday
life, the familiar bumps (or rucks) that form in a rug as
people walk over it has long proved to be a useful analogy
in explaining a range of important physical phenomena.
For example, several authors have used the motion of a
ruck to illustrate how dislocations can facilitate the relative
motion of two crystalline planes of atoms (see pg. 117 of
[1]). In this situation the ruck is quasistatic. However, those
working with carpets every day know that shaking one end
leads to the propagation of rucks, which facilitate small-
scale sliding [2]. This dynamic scenario is used to explain
the observation of Schallamach waves [3]: waves of de-
tachment that control the sliding of rubber surfaces [4,5].
In much the same way, the slip pulses observed in some
earthquakes [6,7] are often thought to be akin to moving
rucks in a rug [8]. Though these analogies are frequently
referred to in the literature, we are not aware of any
investigation of their quantitative validity nor even a study
of the properties of rucks in rugs themselves. In this Letter,
we consider the statics and inertial dynamics of a ruck in a
rug. Our aim is to characterize the model system as a first
step towards understanding the validity of such analogies.

Recently, a great deal of attention has been focussed on
understanding the statics and dynamics of thin elastic
objects, of which a rug is a particular example. Static
localized structures qualitatively similar to a ruck in a
rug have been observed in the compression of thin films
floating on water [9] or deadhering from a polymer sub-
strate [10]. Generally, studies of the dynamics of thin
elastic objects have been focused on investigating the
interaction of a flexible object with a fluid [11,12]. The
purely elastic propagation of localized disturbances along
thin objects has received less attention, notable exceptions
being investigations of a wave in a whip [13], the traveling
waves that form in suspension bridges [14], and the rolling
mode in vibrated thin plates [15].

We begin by considering the static problem of a two-
dimensional sheet of thickness h, density � and bending
stiffness B lying on a rigid, horizontal substrate. A certain
end-end displacement �l is then imposed symmetrically
(see Fig. 1). Since compression of the sheet itself is ener-
getically expensive, we expect that the sheet will buckle
out of the plane. Opposing this is the weight per unit area of
the sheet, �gh, which makes it energetically expensive for
the sheet to lose contact with the substrate everywhere
along its length (in contrast with the conventional elastica
[16]). Instead, contact is lost only over a localized region—
a ruck is formed. We denote the shape of the ruck by [xðsÞ,
wðsÞ] in which s is the arclength, though it is more conve-
nient to determine an intrinsic equation for the local incli-
nation of the ruck, �ðsÞ. This can be found by minimizing
the value of the functional

F �
Z l=2

0

�
1

2
B�2s þ �ghw� �½1��l=l� cos��

�
ds;

(1)

FIG. 1. The ruck shape observed in a sheet of natural rubber
with thickness h ¼ 0:75 mm for different imposed end-end
compressions �L � �l=‘g ¼ 0:3, 2.7 and 4.2.
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in which the first two terms are the bending and gravita-
tional energies of deformation (per unit width), respec-
tively, and the inextensibility constraint is enforced by a
Lagrange multiplier �—the compressive force per unit
width in the ruck. Here l is the total arclength contained
in the ruck and we may consider only the interval [0, l=2]
by symmetry. Integrating by parts and usingws ¼ sin�, we

find that
Rl=2
0 w ds ¼ Rl=2

0 ðl=2� sÞ sin�ds. We may then

use the Euler-Lagrange equations to find a differen-
tial equation for the �ðsÞ that extremizes the functional in
(1). We first note that a natural length scale

‘g �
�

B

�gh

�
1=3

(2)

arises. This elastogravitational length measures the typical
sheet length required for the sheet to be deformed by its
own weight. Introducing nondimensional variables S �
s=‘g, �L � �l=‘g, L � l=‘g, and � � �‘2g=B the differ-

ential equation for �ðSÞ becomes

�SS ¼ �� sin�þ ðL=2� SÞ cos�; (3)

in which subscripts denote differentiation. Eq. (3) is com-
monly referred to as the heavy elastica equation [17]—it is
the classical elastica equation [16] supplemented by a term
representing the sheet’s weight. The differential equation
(3) is of second order but contains an unknown eigenvalue
� so that three boundary conditions are required. These are

�ð0Þ ¼ �Sð0Þ ¼ 0; �ðL=2Þ ¼ 0; (4)

which express that the sheet is horizontal to the substrate
and torque free where it first touches the substrate (at S ¼
0) as well as the symmetry of the sheet about S ¼ L=2. The
boundary value problem (3) and (4) may readily be solved
numerically [18]. Some example profiles are shown in
Fig. 1 superimposed upon images of experimentally ob-
served rucks in which a fixed end-end displacement �L is
imposed. We observe very good agreement between the
theoretically predicted and experimentally observed ruck
shapes though for larger values of �L there is a symmetry
breaking instability [19]. Although the ruck shapes shown
in Fig. 1 are qualitatively similar to those observed in the
classical elastica [16], a quantitative comparison shows
that the heavy elastica shapes are flatter with a more
localized ‘‘bump’’. This is a result of the additional bound-
ary condition �Sð0Þ ¼ 0 in the heavy elastica case.

Analytical progress may be made by linearizing (3) for
small deformations, � � 1. The resulting problem may be
solved analytically giving

� � 4�2L�2; L � ð768=5Þ1=7�4=7�L1=7; (5)

where � � 4:49341 is the smallest positive solution of
tanx ¼ x. Thus for a given displacement �L we have the

laws � � 3:441�L�2=7, L � 4:844�L1=7, and � �
1:326�L4=7 where � � d=‘g is the dimensionless ruck

height. These laws were previously presented as functions
of � [20]. Recently, energy arguments for the scalings
alone were also given [21]. The dependence of L on �L

is distinct from the classical elastica where L is the system
size and hence independent of �L.
We next consider the question will a ruck remain once

the compressing force that formed it is removed? For a
stationary ruck to stick, the compressive force within the
ruck,�, must be smaller than the maximum static frictional
force that can be exerted on the heavy sheet by the sub-
strate. With a coefficient of static friction �, we therefore
require that � � �½ðL0 � LÞ=2þ N0� in which L0 is the
total (nondimensional) length of the sheet and N0 is the
normal reaction on the sheet at the point of contact between
the sheet and substrate (i.e., at S ¼ 0). Considering (3) we
see that N0 ¼ L=2; i.e., the normal force at contact exactly
balances the weight of the material contained in the half of
the ruck for which S < L=2. We therefore find that a ruck
sticks provided that � � �L0=2. This result is exact
though, in general, the dependence of � on �L must be
determined numerically. However, for small deformations,
(5) may be used to relate � and �L and show that a ruck
sticks only if

�L � 20
ffiffiffi
2

p
�3

3
ð�L0Þ�7=2; (6)

i.e., a ruck must be sufficiently large to stick. Qualitatively
speaking, this result remains valid even for large deforma-
tions, since the compressive force � is always a decreasing
function of the imposed end-end compression, �L.
Figure 2 shows a regime diagram of the regions of (�L0,
�L) parameter space for which a ruck sticks or slips.
Figure 2 also shows the results of experiments in which
the critical value of �L at which rucks first stick was
determined for different sheet lengths using a variety of
sheet materials and substrates. In each case, the value of ‘g
was measured experimentally using the loop test [22] and
� was measured from the angle of friction.
We now move on to discuss the dynamic motion of a

ruck. The experiments described here involved mylar
sheets (Goodfellow, Cambridge) of thicknesses h ¼ 125,
250, 350 and 500 �m and length 2 m. These sheets were
laid horizontally on various different substrates (to inves-
tigate the role of substrate friction). The far end of the sheet
is left free to move [23] and the near end attached to a
vertical track. We generate a moving ruck by lifting the
near end of the sheet vertically along the track (allowing
the free end to slide in) and then moving it rapidly down-
wards. This leads to the formation of a localized ruck,
which typically propagates at speeds �1 m=s. The size
of the ruck may be controlled by lifting the near end to
different initial heights. However, to render air resistance
negligible we ensure that the mass of air contained beneath
the ruck is less than the mass of the ruck itself. This
requires that d � �h=�a where �a is the density of air.
Propagating rucks were filmed using a high speed cam-

era (Photron Fastcam) with a frame rate of 250 Hz. (See
Ref. [24] for a movie of a typical experiment.) Images were
analyzed using ImageJ (NIH) to determine the ruck shape
and the position of the ruck’s peak, Xpeak, as functions of
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time. Typical experimental results are shown in Fig. 3. The
time dependence of Xpeak, Fig. 3(a), shows that after some

initial transient, the ruck moves at constant speed for a time
before it slows down and then speeds up. This latter phase
of the motion corresponds to the free end of the sheet
beginning to slip relative to the substrate. The ruck profiles
shown in Fig. 3(b) show that while the ruck moves at
constant speed its shape remains remarkably constant
(though during the early transient and as the ruck slips
away its shape does evolve). We focus on understanding
this phase of the motion here and leave the early and late
time behaviors to a future investigation.

To derive the equations governing the motion of a ruck,
we use the approach of [13,25] modified to include the
vertical acceleration due to gravity. Resolving the stress

within the sheet into horizontal, fðhÞ, and vertical, fðvÞ,
components, the horizontal and vertical force balances are

fðhÞS ¼ XTT; fðvÞS ¼ YTT � 1; (7)

while the torque balance gives

�SS �
g‘g
E=�

�TT ¼ fðhÞYS � fðvÞXS; (8)

in which E is the Young’s modulus of the sheet and T �
tðg=‘gÞ1=2 is dimensionless time.

The experimental results presented in Fig. 3 suggest that
there may be a traveling wave solution of Eqs. (7) and (8).
It is therefore natural to transfer into a frame moving with
constant speed c and introduce � � S� cT. This enables

us to integrate (7) and determine the functions fðhÞ �
FðhÞð�Þ and fðvÞ � FðvÞð�Þ. Substituting these functions
into (8) gives a single equation for � � �ð�Þ:

ð1�c2�g‘g=EÞ���¼�ð�þc2Þsin�þðL=2��Þcos�:

(9)

In our experiments, the dimensional speed of the rucks,
c2g‘g � E=�, the speed of sound within the sheet. We

may therefore neglect the difference between the prefactor
of ��� in (9) and unity so that (9) becomes exactly the

heavy elastica equation (3) with the eigenvalue � replaced
by an ‘‘effective tension’’ �þ c2. Thus, for a given value
of �L, the shape of a steadily moving dynamic ruck must
be exactly that of the static ruck with the same �L. This
point is illustrated in Fig. 3(b) where we see that while the
ruck is propagating with a constant speed, its shape is
indistinguishable from that of the corresponding static
ruck.
It is a simple matter to solve numerically the eigenpro-

blem (9) with boundary conditions analogous to (4). The
linearized problem may be solved analytically giving the
effective tension in terms of the ruck height � � d=‘g

FIG. 3 (color online). Experimental results for the dynamic
propagation of a ruck in a mylar sheet (h ¼ 125 �m). (a) The
horizontal position of the peak of the ruck as a function of time
(points). The speed in the steady state phase, cðg‘gÞ1=2, is the

gradient of the best fit line (dashed line) in the region where the
shape is steady. (b) The shape of the traveling ruck at six instants
of time. [The time of each profile is given by the position of the
corresponding symbol in (a)]. The solution of the heavy elastica
equation (3) with �L ¼ 1:05 is shown by the solid curve.

FIG. 2 (color online). Regime diagram showing the regions of
static friction-length (�L0), compression (�L) parameter space
for which a ruck is observed to stick (i.e., remain) or slip (i.e.,
flatten out) when the external compressive force is removed. The
numerically computed boundary between sticking and slipping
(solid curve) compares well with the asymptotic result (6)
(dashed curve) for �L � 1. The unit of length is ‘g (2).
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�þ c2 � 3:962��1=2: (10)

The presence of the combination �þ c2 in (9) and (10)
indicates that the ruck speed c is not uniquely determined
by the solution of the eigenproblem (9) with boundary
conditions (4). This is demonstrated by the inset of

Fig. 4, which shows raw results for the speed, cðg‘gÞ1=2,
as a function of ruck height, d. However, we note that the
slipping away of the ruck enables us to estimate the value
of �—at the commencement of slipping, � must exactly
balance the maximum static friction force that can be
generated by the material remaining between the ruck
and the free end. Figure 4 shows nondimensional results
for �þ c2 as a function of ruck height � determined using
this experimental procedure. Also plotted in Fig. 4 are the
theoretical predictions obtained by solving the full problem
numerically (solid curve) and the result of the linear analy-
sis (10) (dashed line). These show that we obtain good
quantitative agreement between theory and experiment,
though inaccuracies in determining the onset of sliding
limit this agreement.

In this Letter we have considered the properties of static
rug rucks and shown that friction allows sufficiently large
rucks to remain once the initial compression is removed.
We have also considered the inertial dynamics of rucks,
complementing a recent study of the creeping motion of a

ruck on an inclined plane [21]. A result of particular
interest is that large rucks generally move more slowly
than smaller ones. If colliding rucks aggregate this fact
would drive a population of traveling rucks to form one
large, slow moving ruck. Future work will focus on deter-
mining whether this is qualitatively the same in popula-
tions of slip pulses in geophysical settings and could in turn
lead to alternative mechanical rationalizations [26] of the
statistics of earthquakes.
We thank L. Mahadevan for bringing a related problem

[21] to our attention, arousing our interest in rucks. D.V. is
supported by the 1851 Royal Commission.

[1] N. Mott, A Life in Science (Taylor and Francis, London,
1986).

[2] M. Comninou and J. Dundurs, Int. J. Solids Struct. 14, 251
(1978).

[3] A. Schallamach, Wear 17, 301 (1971).
[4] G. A.D. Briggs and B. J. Briscoe, Wear 35, 357 (1975).
[5] M. Barquins, Mater. Sci. Eng. 73, 45 (1985).
[6] T.H. Heaton, Phys. Earth Planet. Inter. 64, 1 (1990).
[7] M. Adda-Bedia and M. Ben Amar, J. Mech. Phys. Solids

51, 1849 (2003).
[8] S. E. Hough, Earthshaking Science (Princeton University

Press, Princeton, NJ, 2002).
[9] L. Pocivavsek et al., Science 320, 912 (2008).
[10] D. Vella et al., Proc. Natl. Acad. Sci. U.S.A. 106, 10 901

(2009).
[11] A. E. Hosoi and L. Mahadevan, Phys. Rev. Lett. 93,

137802 (2004).
[12] M. Argentina et al., Phys. Rev. Lett. 99, 224503 (2007).
[13] A. Goriely and T. McMillen, Phys. Rev. Lett. 88, 244301

(2002).
[14] Y. Chen and P. J. McKenna, Phil. Trans. R. Soc. A 355,

2175 (1997).
[15] A. Boudaoud et al., Phys. Rev. Lett. 99, 254301 (2007).
[16] A. E. H. Love, A Treatise on the Mathematical Theory of

Elasticity (Dover, New York, 1944).
[17] C. Y. Wang, Int. J. Mech. Sci. 28, 549 (1986).
[18] For simplicity, we take L as given and calculate the

corresponding �L using �L=2 ¼ RL=2
0 ð1� cos�ÞdS.

[19] G. Domokos et al., Physica (Amsterdam) 185D, 67
(2003).

[20] C. Y. Wang, Z. Angew. Math. Mech. 61, 125 (1981).
[21] J.M. Kolinski et al., this issue, Phys. Rev. Lett. 103,

174302 (2009).
[22] I.M. Stuart, Br. J. Appl. Phys. 17, 1215 (1966).
[23] In some instances, a small weight (�50 g) was attached to

the free end to simulate an increased sheet length.
[24] See EPAPS Document No. E-PRLTAO-103-060943. For

more information on EPAPS, see http://www.aip.org/
pubservs/epaps.html.

[25] B. D. Coleman and E.H. Dill, J. Acoust. Soc. Am. 91,
2663 (1992).

[26] J.M. Carlson et al., Rev. Mod. Phys. 66, 657 (1994).

FIG. 4 (color online). Main figure: Logarithmic plot of the
effective tension, �þ c2, (see text) measured experimentally for
rucks in mylar sheets as a function of the dimensionless ruck
height, � � d=‘g. Experimental points are shown for different

sheet thicknesses and substrates (hence different values of the
friction coefficient �) as shown in the legend. The values
measured of the friction coefficients are� ¼ 0:13 (copper),� ¼
0:41 (carpet) and � ¼ 0:16 (wood). The dependence of �þ c2

on � determined from the numerical solution of (9) is plotted as
the solid curve while the asymptotic result (10) is plotted as the
dashed line. Inset: Linear plot of dimensional raw data showing
the dependence of ruck speed cðg‘gÞ1=2 on ruck height d.
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