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We show that all the spatiotemporal degrees of freedom available in a complex medium can be

harnessed and converted into spatial ones. This is demonstrated experimentally through an instantaneous

spatial inversion, using broadband ultrasonic waves in a multiple scattering sample. We show theoretically

that the inversion convergence is governed by the total number of degrees of freedom available in the

medium for a fixed bandwidth and demonstrate experimentally its use for complex media investigation.

We believe our approach has potential in sensing, imagery, focusing, and telecommunication.
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The principle of information transport within a me-
dium for imaging, focusing, communication, or detection
lies in wave propagation. Performances strongly depend on
the behavior of the wave in the medium of interest. Within
the last decades, complex and randommedia have gathered
a lot of interest since physics associated with them offer
more possibilities than their homogeneous counterparts.
For example, it has been shown through information theory
that the communication capacity between arrays of anten-
nas increases with the complexity of the propagation me-
dium [1]. Similarly, exploiting multiple scattering in a
random medium allows one to focus waves in time and
space on foci smaller than the Rayleigh criterion through
the use of time reversal (TR) [2,3].

Most of these properties can be explained in terms of
field correlations. A random medium, illuminated with a
coherent source, generates a speckle pattern which can be
characterized by a correlation length and a correlation
frequency. The correlation length represents, at a given
frequency, the typical dimension of a speckle grain, while
the correlation frequency measures the minimal frequency
change that leads to independent speckle patterns. From
those two quantities and considering a given set of loca-
tions and a given spectral range, one can define a number of
spatial and temporal degrees of freedom.

These degrees of freedom represent as many indepen-
dent channels which can convey information. Most of the
time, the temporal and spatial channels are considered
independently. For instance coherent control of the op-
tical field only exploits the spatial correlations of a me-
dium [4]. Similarly, frequency hopping modulation tech-
niques used in telecommunication take advantage of the
temporal correlations only [5]. TR, which uses broadband
waves and multiple sensors, has been proved to be a
powerful principle for the study of waves in complex
media [6], their use for focusing [2,7,8], telecommuni
cation [9–11] or even sensing [12]. It takes advantage of
all the spatiotemporal degrees of freedom, but does not
distinguish between spatial and temporal ones, which re-
sults in a focusing that is equivalent spatially and tempo-
rally [6].

The question that arises is: can one make use of temporal
degrees of freedom in order to obtain spatial information,
or vice versa? Indeed, one typical problem in imaging or
detection techniques is that the number of locations where
one intends to focus, or equivalently the number of targets
to be detected, must be smaller than the number of sensors
used. This limitation comes from the fact that usual tech-
niques require matrix inversion or pseudoinversion at a
single frequency, thus being limited by the spatial degrees
of freedom available.
In the present Letter, considering the simplest case of

scalar acoustic waves in a two dimensional isotropic ran-
dom medium, we show that it is indeed possible to make
use of all the spatiotemporal degrees of freedom in order to
perform a true spatial inversion. We demonstrate that all of
them can be ‘‘converted’’ into spatial information, hence
allowing spatial inversion, at a single time, on multiple
locations using a single sensor. The method is based on an
iterative TR scheme which does not require any matrix
inversion. To support our findings we perform an experi-
mental single sensor spatial inversion on multiple foci
using ultrasound. Then, we study analytically and experi-
mentally the limitations of the inversion procedure, and
link them to the number of the degrees of freedom.
We consider a system composed of L sources in front of

a time reversal mirror (TRM) with Ns emitters-receivers.
The propagation between sources and the TRM can be de-
scribed by the set of Green’s functions hijðtÞ, i 2 ½1;L�,
j 2 ½1;Ns�, relating the source i and the jth TRM’s ele-
ment. Using Fourier transform one can define the mono-
chromatic propagation operator Hð!Þ, a L� Ns matrix.
In a typical TR experiment, time reversed Green’s func-

tions hjkð�tÞ are emitted from the TRM in order to focus a

short pulse at location j. The result of this operation is that
the waves emitted by the TRM converge towards position j
and a short pulse is received at a specific time, which we
define as t ¼ 0. At any other times and locations, TR
creates spatial and temporal sidelobes. Derode et al. [6]
have shown that those sidelobes are equivalent and have a
variance which is the amplitude of the focused pulse
divided by the square root of the total number of degrees
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of freedom. Mathematically, emitting with the Ns mirror’s
transceivers, one obtains at any positions i and time t,

f ijðtÞ ¼
XNs

k¼1

hikðtÞ � hjkð�tÞ; (1)

where � denotes temporal convolution. Matrix f can equiv-
alently be written in the Fourier domain using matrix form

F ð!Þ ¼ Hð!ÞHyð!Þ; (2)

where y stands for the transpose conjugateHy ¼ tH�. One
can notice that Fð!Þ is a square matrix of order L, inde-
pendent from the TRM’s size. From now, we only concen-
trate on the signals at time t ¼ 0, that is to say, at the time
of the maximum of the time reversed pulses. The values of
the measured fields at this specific time simply writes

G ¼ fðt ¼ 0Þ ¼
Z
!
Fð!Þd!: (3)

Consequently, matrix G, whose elements appear to be a
sum of different frequency components, is a measure of the
fields obtained after TR focusing on each of the L positions
at time t ¼ 0. The problem of interest is the inversion of
this square matrix. Comparing to classical inverse prob-
lems, the inversion does not depend on the number of
receivers constituting the TRM but on the spatiotemporal
degrees of freedom of the medium. This is different from
pseudoinversion of Hð!Þ [13], which is an inversion fre-
quency by frequency. Our approach drastically reduces the
constraints of the inversion since it treats coherently all the
frequencies at once.

The aim is to find a set of signals E that allows a perfect
instantaneous spatial inversion. For that matter we have to
cancel the spatial sidelobes, at time t ¼ 0, on positions j �
i, created by TR focusing on each position i (namely Gij).

We start by normalizing the signals such that G has a unity
diagonal (i.e. each focused pulse has a unit amplitude). The
idea is to add to the initial signals that focus on position i, a
sum of signals that focus on positions j � i multiplied by
the opposite of the sidelobes to be canceled (�Gij) This

way we ‘‘erase’’ the sidelobes on positions j � i created by
focusing on position i. Naturally, this operation creates
other lower sidelobes, and in order to completely invert
the matrix we iterate the process until convergence, if
possible. As a summary, the nþ 1th emissions can be
written in the Fourier domain as

E ðnþ1Þð!Þ ¼ 2EðnÞð!Þ � tGðnÞEðnÞð!Þ: (4)

Naturally, the algorithm starts with time reversal, i.e.,

emissions of Eð1Þ ¼ Hy. After propagation from the TRM
toward the focal plane, the expression of the wave fields at

each position Fðnþ1Þð!Þ and their value at the origin time

Gðnþ1Þ are

Fðnþ1Þð!Þ ¼ FðnÞð!Þ½2IL �GðnÞ�;
Gðnþ1Þ ¼ GðnÞ½2IL �GðnÞ�; (5)

where IL is the identity matrix of size L. Again, it is

important to keep in mind that Gðnþ1Þ has no dependence
in time (or in frequency) because it represents the fields at a
specific time. Then, it is easy to demonstrate that, at the nth
iteration, the instantaneous wave patterns obtained in the

focal plane GðnÞ follow a matrix geometric progression

G ðnÞ ¼ IL � ½IL �G�ð2n�1Þ: (6)

As G is defined as a (continuous) sum of covariance
matrices, it is a symmetric squared real matrix, similar to a
diagonal matrix with positive eigenvalues. Therefore, ac-

cording to Eq. (6), the suite ðGðnÞÞn2N must converge to the
unit matrix IL if the highest eigenvalue of G, or equiv-
alently its Euclidean matrix norm kGk2, is less than 2.
Under this constraint, an instantaneous field that is non
zero only at the focus can be designed. In addition, the
exponent that governs the convergence 2n�1 gives a quick
convergence and we get an almost perfect inversion after
only a few iterations.
The Fresnel vectors representation can illustrate this

spatial inversion. In the Fourier domain, G is the addition
of various frequency components, each represented by a
Fresnel vector. In a TR experiment, at the source position i,
all spectral contributions have a zero phase and add con-
structively as

R jHiij2d!. Outside the source, contributions

of
R
HjiH

�
iid! are presumably uncorrelated for a complex

medium and they add as a random walk [Fig. 1(a)]. After
the iterative process, we have corrections on positions
outside the source: the sum of Fresnel vectors cancel the
initial Fresnel vectors, whereas at the focus they add
randomly [Fig. 1(b)].
To test experimentally the potential of the iterative

focusing inversion, we perform an experiment in the ultra-
sonic range. A single transducer element is used as TRM in
front of a motorized plane transducer. They both work at a
central frequency of fc ¼ 1:5 MHz. They are located on
both sides of a multiple scattering medium, which consists
in a random collection of parallel steel rods immersed in

FIG. 1 (color online). Schematic representation of a broadband time reversal operation (a) and the iterative focusing (b). Each arrow
(a Fresnel vector) represents a frequency component. (a) Frequency components add constructively at the source, and randomly
outside. (b) Outside the source, the corrections (red arrows) cancel the initial field.
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water. We first record a set of L ¼ 21 by Ns ¼ 1 Green’s
functions sampled at 32 MHz while the transducer emits a
short pulse and is translated parallel to the array.

The iterative process is done numerically and after only
five iterations the background level is lower than the com-
puter resolution. The output of the algorithm is a set of L
by Ns temporal signals eijðtÞ that supposedly ensure an

ideal focusing at time t ¼ 0. As TR works as a matched
filter, the signals eijðtÞ must have more energy to ensure a

same peak amplitude at focus. The imposed spatiotemporal
constraints are small enough that the increase in energy at
the emission is only 1.4 times that of TR.

These signals are then emitted by the TRM through the
same scattering medium. The transducer that was previ-
ously used as a source is now a receiver, and it records the
waveform generated in the focal plane. It was already
shown earlier [6], that TR is a fairly robust operation that
takes advantage of disorder to converge back to the source
position and recover the original pulse duration. In our
case, emissions are not the time reversed Green’s functions
and, even if they supposedly ensure a good focusing at the
origin time, we must quantify the spatial and temporal
focusing. Commonly, drawing the directivity pattern con-
sists in keeping the maximum value in time of the wave
field for each position j. The red dashed line on Fig. 2
shows the experimental focal spot using this definition. The
emitted signals eijðtÞ generate a wave field that is compa-

rable to the one generated by time reversal (black dashed-
dotted line). It means that the procedure does not reduce
the temporal sidelobes: this is not a complete spatiotem-
poral inversion contrary to [13].

To show the spatial inversion at time t ¼ 0 (i.e., the
arrival time of the peak), we plot in blue line the instanta-
neous focal spot. The improvement of the focusing is
dramatic: the spatial side lobes level is reduced by nearly
30 dB. On a temporal point of view, the wave field gen-
erated by signals eijðtÞ is similar to the one obtained with
time reversal (see inset) except that the symmetry in time is
broken. The same improvement is observed over the other
positions: using a color map representation the inversion of
matrix G is clearly demonstrated comparing the instanta-
neous focusing for the first iteration (i.e., TR) and after the
convergence.
Now, the study of interest is the quantification of the

method’s limitations. We previously showed that the itera-
tive process converges quickly towards identity if, and only
if, the Euclidean norm kGk2 is less than 2. Off diagonal
elements of G are estimations of cross-correlations be-
tween Green’s functions. For simplicity we consider that
they are uncorrelated due to the random medium, that is to
say Hijð!Þ is a Gaussian random complex variable with

zero mean. By normalizing it in order to ensure an objec-
tive value of 1 at focus, its variance simply writes 1

Ns
, where

Ns stands for the number of spatial degrees of freedom. Let
us make a second approximation concerning the frequency
dependence: the frequency spectrum is sampled with the
correlation frequency �!, the minimal spectral length
guaranteeing uncorrelated frequencies. Calling �! the
bandwidth, the number of frequency, or temporal, degrees
of freedom is Nf ¼ �!

�! . Thus, elements of matrix G with
our approximations simply write

Gij ¼ 1

Nf

XNf

k¼1

XNs

n¼1

H!k

in H
!k�
jn ;

hH!k

in H
!l�
im i ¼ 1

Ns

�nm

|fflffl{zfflffl}
spatial hypothesis

�kl|{z}
frequency hypothesis

; (7)

where �ij is the Kronecker symbol. We then calculate the
mean and the variance of Gij according to our hypothesis
using momentum theorem:

hGiji ¼ �ij; var½Gij� ¼ 1

NsNf

(8)

So, matrix G can be seen as a sum of the L dimensional
identity matrix IL and a random squared matrix R with
variance of 1

NsNf
. This permits us to overvalue its norm

kGk2 ¼ kIL þRk2 � 1þ kRk2: (9)

Introducing results of Eqs. (8) into Eq. (9) allows to
define a convergence criterion for the iterative process.
This is a condition over the L potential uncoupled focusing
positions versus the number N ¼ NsNf of spatiotemporal

degrees of freedom

L � N ¼ NsNf: (10)

Physically, this equation has a pretty simple meaning.
When focusing on 1 position with TR, a background side-
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FIG. 2 (color online). (Top) Focal spot for time reversal (black
dashed-dotted line) and emission of iterative signals (red dashed
line) with one transducer source. The blue line represents the
instantaneous spot with emission of the iterative signals. The
focused pulses for TR and iterative signals emissions are repre-
sented in the inset. (Bottom) The 21 instantaneous focal spots for
time reversal (left) and iterative signals (right): a true inversion
over 21 points with only one source is shown.
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lobes level of 1=N is obtained. Now if one wants to focus
on L positions, the sidelobes add incoherently, and their

average amplitude is multiplied by
ffiffiffiffi
L

p
. Thus, Eq. (10)

states that the sidelobes have to be lower than the ampli-
tude of the initial focused pulse in order to be iteratively
eliminated.

One can notice that N is equal to the product of each
type of degrees of freedom. Thus, in the monochromatic
case (Nf ¼ 1) where time reversal is equivalent to phase

conjugation, the inversion should be possible only if the
number of sources Ns is at least equal to the number of
positions. This is why in monochromatic methods [14] or
in the pseudoinversion processes [13] authors conclude to a
number of emitters higher than the number of uncorrelated
focal spots. Assuming that L and Ns are large enough,
Sprik et al. [15] demonstrated that eigenvalues distribution
of Fð!Þ (i.e. in the monochromatic case) follows a
Marcenko-Pastur law, where the highest eigenvalue is
related to L

Ns
. After integration over the whole bandwidth,

the largest eigenvalue of G would be related to L
NsNf

. Here,

the instantaneous field can be inverted over L distinct
positions even with a number of sources Ns equal to 1,
provided that the number of uncorrelated frequenciesNf in

the bandwidth compensates for the lack of sources.
According to this calculation, another interesting result

is that the Euclidean norm of matrixG gives us information
about the medium. Actually, if the highest eigenvalue of G
is lower than 2, the convergence criterion is verified and the
number of degrees of freedom is high enough to ensure
inversion feasibility. For a given number of elements Ns,
decreasing the available bandwidth of signals, a minimum
value is reached when the inversion no longer converges:

�!min ¼ L�!

Ns

: (11)

The Wiener-Khinchin theorem states that the spectral
correlation function is the Fourier transform of the ‘‘time
of flight’’ distribution. In other words, if �T stands for the
typical duration of the transmitted energy jhðtÞj2, the
equality �! ¼ 1

�T is verified. Then, in a multiple scattering

medium, in the diffusive approximation, this typical
spreading time is equal to the so called Thouless time

�thouless ¼ l2
0

D , where l0 is the medium’s thickness and D

is the diffusion coefficient. For isotropic scatterers,D is re-
lated to the elastic mean free path le [16] by D ¼ c0le

d ,

where c0 is the average speed of sound, and d the prob-
lem’s dimension (here d ¼ 2). Eventually, we have the
equality

leð!Þ ¼ 2l0
2Ns�!minð!Þ

c0L
: (12)

Thus, using the same set of Green’s functions as in the
previous experiment, we computationally determine (by
dichotomy) the minimum bandwidth value allowing the
convergence, as a function of the central frequency. Using
experimental parameters, that is to say l0 ¼ 3 cm, L ¼ 21,

c0 ¼ 1524 m � s�1 and Ns ¼ 1, we get the evolution of the
average elastic mean free path as a function of excitation’s
central frequency with one set of 21 Green’s functions
(Fig. 3). The reconstruction clearly reveals a resonant
frequency around 2.75 MHz that corresponds to an elastic
cross section peak using aluminum cylinder with 0.4 mm
diameter as a scatterer [17].
In conclusion, we have shown how one can manipulate

spatiotemporal degrees of freedom of waves in a random
medium through a spatial inversion. Experiments done in
the ultrasonic range with a strongly scattering medium
confirmed the feasibility of such a method. We have found
a convergence criterion and used it to investigate the
statistical properties of the medium. We believe that this
work can be extended to polarized waves and anisotropic
random media, and will have applications within the fields
of imaging, detection in scattering media, sensing tech-
niques, and telecommunications.
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FIG. 3 (color online). Evolution with frequency of the recon-
structed elastic mean free path. The reconstruction is done, ac-
cording to Eq. (12), using convergence criterion. The red aster-
isks represent a theoretical prediction for a Gaussian distribution
of radii [17] (mean radius 0.4 mm, standard deviation 8 mm).
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