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We show that in the canonical case of two lossless spheres that are electromagnetically coupled there is

interplay between conservative and nonconservative forces, which is controlled by the polarization of the

bounding field. We demonstrate that this phenomenon leads to new mechanisms to induce torques on

spherically symmetric, optically isotropic, and lossless objects. The electromagnetic interaction can be

exploited to apply orbital torque about the mutual center of mass of the bounded spheres as well as spin

around the individual axes. When the incident field is linearly polarized, the torques are mostly

conservative and affect only transient behaviors while for circularly polarized fields, the torques are

entirely nonconservative, resulting in steady rotations. Means to control the magnitudes of orbital and spin

torques are presented and applications to nanorotator machines are discussed.
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The idea of a mechanical action of light has been pur-
sued for hundreds of years. The ability to trap and maneu-
ver small objects such as microparticles, polymer chains,
cells, etc., is undoubtedly one of the most exciting uses of
what is now commonly referred to as optical tweezers [1].
A host of applications are being pursued where optical
forces are employed for manipulation, measurements, or
for creating and controlling new states of matter. For
instance, one important consequence of electromagnetic
particle-particle interaction is the optical binding (OB) first
noted by Burns et al. [2]. Two particles excited by a
common field can form a bound ‘‘optical dimer’’ when
they arrange themselves to a stable position where the
radial forces acting on them are zero.

Since the first OB demonstration, a number of aspects
have been studied including the excitation generated by
counterpropagating beams [3], effects of the beams’ struc-
ture [4], or the consequences of scattering [5]. In all
situations, the resultant binding intrinsically depends on
the potential energy landscape created by the conservative
part of the electromagnetic forces.

A fundamental consequence of an applied force is the
ability to induce torque with respect to some reference
point. Torques can also be induced by optical fields.
Several concepts for optical spin motors or ‘‘nanorotators’’
have been discussed based on optical traps created with
circularly polarized light or vortex beams and relying on an
object’s asymmetry, absorption, or birefringence [6–8].
Another notable proposal uses the subtle interplay between
conservative and nonconservative forces in an optical trap
to create a ‘‘nanofountain’’ with a constant circulation of
trapped particles [9].

In this Letter we introduce a new mechanism to generate
optical torques. Electromagnetic fields can induce conser-
vative forces resulting from field gradients as well as non-
conservative forces appearing due to radiation pressure and
gradients of phase. We show that in the case of OB parti-
cles, these forces determine conservative and nonconser-

vative torques and, most importantly, the interplay between
them is controlled by the polarization of the incident field.
Let us examine the system of two identical spherical

particles illuminated by a plane wave propagating perpen-
dicularly to the radius vector connecting the centers of the
particles, as shown in Fig. 1. Forces are generated on the
spheres due to the three-dimensional, polarized field estab-
lished as a result of scattering [10]. Because of symmetry
in the xy plane, the force acting on each particle can be
decomposed into radial (binding) and tangential (rota-
tional) components. There is also a scattering force along
the incident wave wave vector k, but its effect is identical
for the two particles and does not hamper their transversal
movement. This is the classical OB geometry [2,11,12].
In the simplest case of bound Rayleigh particles, the

force acting on one scatterer can be estimated as

hFui ¼ 1

2
Re

�
��E� @E

@u

�
; (1)

where � is the scatterer’s polarizability, E is the electric
field, u ¼ x, y, z, and � denotes complex conjugate. The

FIG. 1 (color online). Optical binding in elliptically polarized
light. Apart from the binding force FR, interacting particles
experience tangential forces FT . Note the existence of differen-
tial forces �F leading to individual spinning in addition to
common orbiting of particles around the system’s center of mass.
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field E is found by solving self-consistently the system of
equations that takes into account the mutual interaction
between the particles [11]

Eðr1Þ ¼ EIðr1Þ þG�Eðr2Þ;
Eðr2Þ ¼ EIðr2Þ þG�Eðr1Þ:

(2)

In Eq. (2), r1 and r2 represent the dipole locations, EIðrÞ is
the incident field, and the tensorGðjr1 � r2jÞ is the interdi-
pole propagator. The field derivative is then calculated to
obtain the final expression for the force in Eq. (1).

A popular way for evaluating the derivative @E=@u is to
differentiate the final solution of the system of Eqs. (2) [see
Eq. (4) in Ref. [11] ]. By doing so, however, the results
contradict the calculation of time-averaged forces based on
the well-established formalism of momentum flux tensor
(Maxwell stress tensor) [14]. The correct way of evaluating
the derivative @E=@u is to differentiate with respect to
either r1 or r2 directly in Eq. (2). It is interesting to note
that the way @E=@u is calculated has a minor effect for the
radial, binding force; this is perhaps the reason this incon-
sistency has not been noticed before. When evaluating the
tangential forces, however, there are situations where the
way the calculation of field derivatives is conducted be-
comes important as it will be demonstrated here.

Using Eqs. (1) and (2) one can now evaluate the radial
and tangential forces to be

hFRi¼ j�j2
2
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where � ¼ 2 expðikRÞð�ikRþ 1Þ=R3 and � ¼
expðikRÞðk2R2 þ ikR� 1Þ=R3 are eigenvalues of G, R ¼
jr1 � r2j, and k is the wave number. EI

?, EI
k are the

components of incident field perpendicular and parallel
to the separation vector. We can now proceed to examine
the effect of the incident polarization.

Optical binding with linearly polarized light.—Because
the depth of the potential wells in the stationary points
depends on the incident polarization [12], the system of
optically bound particles tends to orient itself such that it
occupies the most energetically favorable position. When
the interaction is weak (�� � 1, �� � 1), Eq. (3b)
simplifies to hFTi ¼ j�j2jEIj2 cosð2�ÞRe½ð���Þ=R�,
where � is the angle between polarization and separation
vectors. We note that the tangential force varies in space
proportionally to cosðkRÞ or sinðkRÞ having the same pe-
riodicity as the radial (binding) force [Eq. (3a)]. The
tangential force acting on a dipolelike particle is zero
when the field polarization is along or orthogonal to the
separation vector.

For systems of larger particles one has to go beyond the
simple dipole approximation and use numerical proce-

dures. The method of choice is the coupled dipole approxi-
mation (CDA). We use an extension of CDA that accounts
for the interaction between particles without discretizing of
space between them [15]. The calculations yield the local
field distribution from which the forces acting on each
individual dipoles are found using the procedure described
in Ref. [16]. Subsequently, one may readily find the cor-
responding torques�T ¼ P

jR
?
j � FTðrjÞ þ p?

j � E?ðrjÞ
by summing over all dipoles pj in the system [17]. HereRj

represents the position of the dipole relative to the axis of
rotation and the symbol ? denotes the components of
vectors perpendicular to the chosen axis. In the case of
OB spheres, one may identify torques resulting in two
special rotational motions: (i) spheres orbiting together
around their common center of mass and (ii) spheres spin-
ning about their own axis.
Typical results of CDA calculations are illustrated in

Fig. 2. As can be seen, there are no torques when the
incident polarization is orthogonal or along the separation
vector. However, torques arise at any other angle resulting
in orbital and spin motions. Note that the torque does not
reach its maximum at exactly � ¼ �=4 as may have been
expected. The reason is that the separation vector corre-
sponding to a stable binding position is also a function of
angle � [12]. The unexpected appearance of spin torque is
due to a gradient in the tangential force across the spheres
as shown in Fig. 1. Because of this gradient the spin torque
has an opposite sign compared to the orbital one. In fact,
the mere existence of these spin torques is a significant
result, demonstrating that OB interaction can lead to rota-
tions of lossless dielectric objects.
The torques in Fig. 2 are mostly determined by gradient

forces and, hence, determined by the conservative part of
the total force. In any system with damping, the mechani-
cal motion created by a conservative force will eventually
cease, and the OB particles will align perpendicular to the
direction of polarization. In the following we will reveal
other situations where the nonconservative forces are the
main cause for such torques.
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FIG. 2 (color online). Torques in an optically bound system of
silica spheres of radius a ¼ 0:1�m solid lines, a ¼ 0:2�m dashed
lines, a ¼ 0:4�m dot-dashed lines: (a) orbital torque about the
system’s center of mass and (b) spin torque of a sphere about its
own axis. The spheres are in water and are excited with a field
polarized linearly at an angle � with respect to the optical
binding vector (�0 ¼ 104jEIj2a4=�).
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Optical binding with circularly polarized light.—
Recently, we demonstrated that scattering of circularly
polarized light from a sphere generates a spiraling energy
flow around it [18]. This effect arises from the conversion
of spin angular momentum of incident light into orbital
angular momentum of scattered light. One can envision
that a test object placed in the vicinity of such a sphere will
experience the radiation pressure from the curved power
flow, causing the object to move along curled trajectory. In
reality, the situation is complicated by the interaction
between the two bodies as was discussed before.
Moreover, together with radiation pressure, the field gra-
dient force and the force due to gradient of phase may play
a significant role. Thus, the real outcome can only be found
by analyzing self-consistently the problem of electromag-
netic interaction.

Starting from Eq. (3b) in the simple case of small non-
absorbing dielectric particles, the tangential force can be
approximated to be [19]

hFTi ¼ �j�j2Reð�ÞjEIj2½6kRð3� k2R2Þ cosð2kRÞ
� ð9� 15k2R2 þ k4R4Þ sinð2kRÞ�=4R7: (4)

The sign is determined by the polarization’s handedness. It
is worth noting that the force magnitude changes as a
function of R with twice the frequency compared to the
optical binding force evaluated from Eq. (3a). Further-
more, contrary to the case of linear excitation, the potential
landscape is now circularly symmetric as shown in the
inset of Fig. 3. This means that the tangential forces are
completely nonconservative and create a steady-state orbi-
tal torque about the system’s center of mass. Particles move

along stationary orbits with radii determined by the condi-
tion hFRi ¼ 0. In addition to this continuous rotation
around the common axis, the particles will also exhibit a
continuous rotation around their own axes due to the
gradient of the nonconservative tangential force along the
radial direction.
A typical summary plot of the orbital torque is shown in

Fig. 3. Also shown are the analytical predictions of Eq. (4)
for Rayleigh particles, which seem to make a good de-
scription up to a radius of about a tenth of the wavelength.
As apparent in Fig. 3, an interesting effect occurs for larger
spheres: the orbital rotation can change its sense depending
on the particle size. This change in the direction of rotation,
not present in the case of small particles, can happen even
when moving between the different stationary orbits. Our
calculations also indicate that for particles with a � �m,
the radial and tangential forces have now similar perio-
dicities as a function of R and, moreover, the zeros of radial
force and the zeros of the tangential force occur approxi-
mately in the same place. Thus, a slight modification in the
radial position of spheres can change the direction of
rotation.
In addition to electromagnetic interaction, OB systems

can also be subject to Brownian motion. Directional mo-
tion due to optical forces will be affected by the additional
chaotic movement associated with some random force
hF2

Bi ¼ 12��akBT [20]. The torque resulting from the
Brownian force provides a useful reference for the magni-
tude of orbital torques. In Fig. 3, one can clearly see that for
a � 0:3�m and an optical intensity of 50 mW=�m2, the
optically induced torques dominate.
Because of the complex interaction, the OB particles are

also subject to spin torque with respect to the individual
axes as shown in Fig. 4. As can be seen, for the chosen
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FIG. 3 (color online). Magnitude of orbital torque as a function
of the radius of interacting spheres for the first (curve 1, blue)
and second (curve 2, red) stationary orbits. The plus symbols
indicate regions where the torque has opposite sign. The dashed
lines indicate the analytical predictions based on Eq. (4) for
Rayleigh particles. The calculations are for silica spheres in
water excited with a plane wave of intensity 50 mW=�m2 and
wavelength in vacuum � ¼ 532 nm. The black line shows the
magnitude of torque due to Brownian force at 290 K in the first
stationary orbit. The inset depicts the symmetric potential energy
landscape and the trajectory of a bound particle due to non-
conservative orbital torques.
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FIG. 4 (color online). Magnitude of spin torque �s as a func-
tion of the radius of interacting spheres for the first (curve 1,
blue) and second (curve 2, red) stationary orbits. The plus
symbols indicate regions where the torque has opposite sign.
The calculations are for the same conditions as in Fig. 3. The
black line shows the magnitude of absorption-induced spin
torque of one silica sphere with refractive index ni ¼ 1:59þ
10�7i.
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parameters, the spin torque increases with the particle size
but, similar to the orbital torque, the sense of rotation is not
always the same. Examining the two types of torques in
Figs. 3 and 4, one can see that the spin and orbital torques
have opposite directions for small particles but their be-
havior becomes more complicated when the sizes increase.

It is instructive to compare the magnitude of OB spin
torque with the optical torque exerted on a particle due to
its intrinsic absorption. The later can be estimated as
�abs ¼ jEIj2a2Qabs=4k [21], where Qabs is the absorption
coefficient. Estimations based on typical values for absorp-
tion in silica are shown in Fig. 4, and, as can be seen, spin
torque dominates for a � 0:1�m. Notably, because the OB
spin torque does not necessarily have the same direction as
the excitation handedness while the torque due to absorp-
tion is always in the same direction, the two torques can
combine to increase or cancel the net rotation.

Finally, one should note that the magnitudes of the
orbital and spin rotations of OB particles may be affected
by the surrounding medium. In fluids, in addition to the
influence of viscosity on forces and torques, hydrodynamic
coupling may occur between closely placed particles. For a
sphere of radius a ¼ 0:4�m and an intensity of
50 mW=�m2 in the Rotne-Prager approximation [22]
one finds that, in the first stationary orbit, the orbital and
spin angular velocity in water are �o ¼ 17 rad=s, �s ¼
�2:6 rad=s, respectively. It is worth mentioning that for
these specific parameters, the liquid flow created by the
orbiting spheres greatly affects their spin rotation forcing
them to rotate in opposite direction with respect to acting
torque �s (as indicated by minus sign). In fact, the ratio
between spin and orbital angular velocities can be optically
modified. This external control together with the hydro-
dynamic coupling may be used to detect the presence of
otherwise hardly noticeable spinning motion of OB
spheres.

In conclusion, we have demonstrated that optical inter-
action forces can lead not only to binding, but also to
complex rotations. The interplay between conservative
and nonconservative forces constitutes a new mechanism
to induce torques on spherically symmetric, optically iso-
tropic, and lossless objects. The bound system discussed
here constitutes a new kind of ‘‘optical matter’’ having its
mechanical properties strongly coupled to the exciting
radiation.

We found that when the incident field is linearly polar-
ized, the torques are mostly conservative and affect only
the transient behaviors. For circular polarization on the
other hand, the nonconservative torques are significant
and lead to nontrivial phenomena. In particular, bound
systems can rotate not only around the common center of
but also around their own axes. In the intermediate case of
elliptically polarized light, the conservative torque will
determine a transient orbital motion, whereas the noncon-

servative one will lead to a continuous spin rotation. The
whole system can be seen as a ‘‘nanomixer’’ with complex
mutual rotations of constituents. The direction and speed
of these rotations can be dynamically controlled through
the intensity, state of polarization, and spatial profile of
the incident radiation. Our estimations indicate that effects
are easily observable under reasonable environmental
conditions.
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