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We derive the time-reversal modified universality for both quark and gluon Sivers functions from the

parity and time-reversal invariance of QCD. We calculate the single transverse-spin asymmetry of

inclusive lepton from the decay of W bosons in polarized proton-proton collision at the Brookhaven

National Laboratory Relativistic Heavy Ion Collider (RHIC), in terms of the Sivers function. We find that,

although the asymmetry is diluted from the W decay, the lepton asymmetry is at the level of several

percent and is measurable for a good range of lepton rapidity at RHIC. We argue that this measurable

lepton asymmetry at RHIC is an excellent observable for testing the time-reversal modified universality of

the Sivers function.
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I. Introduction.—Much of the predictive power of per-
turbative quantum chromodynamics (QCD) is contained in
factorization theorems [1]. They normally include two
assertions. One is that a physical quantity can be factorized
into perturbatively calculable short-distance hard parts
convoluted with nonperturbative long-distance distribution
functions. The other is the universality of the nonperturba-
tive functions. Predictions follow when processes with dif-
ferent hard scatterings but the same distribution functions
are compared. With one set of universal parton distribution
functions (PDFs) the leading power collinear QCD factor-
ization formalisms have been very successful in interpret-
ing almost all existing data from high energy collisions
with momentum transfers larger than a few GeV [2].

The phenomenon of single transverse-spin asymmetry

(SSA), AN � ð�ð ~S?Þ � �ð� ~S?ÞÞ=ð�ð ~S?Þ þ �ð� ~S?ÞÞ,
defined as the ratio of the difference and the sum of the

cross sections when the spin vector ~S? is flipped, was first
observed in the hadronic �0 production at Fermilab in
1976 [3]. Large SSAs, as large as 30%, have been consis-
tently observed in various experiments involving one po-
larized hadron at different collision energies [4], and
presented a challenge to the leading power collinear
QCD factorization formalism [5].

Two widely discussed theoretical approaches have been
proposed to evaluate the observed SSAs in QCD. One
generalizes the QCD collinear factorization approach to
the next-to-leading power in the momentum transfer [6],
and attributes the SSA to the quantum interference of
scattering amplitudes with different numbers of active
partons [7,8]. The size of the asymmetry is determined
by new three-parton correlation functions [9]. This gener-
alized collinear factorization approach is more relevant for
the SSAs of cross sections whose momentum transfers

Q � �QCD. The other approach factorizes �ð ~S?Þ in terms

of the transverse momentum dependent (TMD) parton
distributions defined in Eq. (1) below [10–14]. It attributes
the SSAs to the nonvanishing Sivers function [15], which is

defined as the spin-dependent part of TMD parton distri-
bution, or the Collins function if a final-state hadron was
observed [16]. The TMD factorization approach is more
suitable for cross sections with two very different momen-
tum transfers, Q1 � Q2 * �QCD. These two approaches

each have their kinematic domain of validity; they were
shown to be consistent with each other in the kinematic
regime where they both apply [17].
However, there is one crucial difference between these

two approaches besides the difference in kinematic re-
gimes where they apply. The Sivers function could be
process dependent, while all distribution functions in the
collinear factorization approach are universal. It was pre-
dicted by Collins [10] on the basis of time-reversal and
parity arguments that the quark Sivers function in semi-
inclusive deep inelastic scattering (SIDIS) and in Drell-
Yan process (DY) have the same functional form but an
opposite sign, a time-reversal modified universality. In this
Letter, we derive the same time-reversal modified univer-
sality for both quark and gluon Sivers function from the
parity and time-reversal invariance of QCD.
The experimental check of this time-reversal modified

universality of the Sivers function would provide a critical
test of the TMD factorization approach [10–14]. Recently,
the quark Sivers function has been extracted from data of
SIDIS experiments [18]. Future measurements of the SSAs
in DY production have been planned [19]. In this Letter, we
present the SSAs of inclusive single lepton production
from the decay of W bosons, and show that the lepton
SSAs is significant and measurable for a good range of
lepton rapidity at the Brookhaven National Laboratory
Relativistic Heavy Ion Collider (RHIC). We find that the
lepton SSAs are sharply peaked at transverse momentum
pT �MW=2 withW massMW . This is because the mostW
bosons at RHIC have qT � MW . On the other hand, lep-
tons from heavy quarkonium decay and other potential
backgrounds are unlikely to be peaked at the pT �
MW=2. Since the W production and DY share the same
Sivers function, we argue that the SSA of inclusive high pT
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leptons at RHIC is an excellent observable for testing the
time-reversal modified universality.

II. The QCD prediction.—The predictive power of the
TMD factorization approach to the SSAs relies on the
universality of the TMD parton distributions. For the

lepton-hadron SIDIS, ‘ðlÞ þ hðp; ~SÞ ! ‘0ðl0Þ þ h0ðp0Þ þ
X, the factorized TMD quark distribution has the following
gauge invariant operator definition [20],

fSIDIS
q=h" ðx;k?; ~SÞ¼

Z dy�d2y?
ð2�Þ3 eixp

þy��ik?�y?hp; ~Sj �c ð0�;0?Þ

��y
n ðf1;0g;0?Þ�y

n?ð1;fy?;0?gÞ�
þ

2

��nðf1;y�g;y?Þc ðy�;y?Þjp; ~Si; (1)

where yþ ¼ 0þ dependence is suppressed and the gauge
links from the final-state interaction of SIDIS are

�nðf1; y�g; y?Þ � Pe
�ig

R1
y� dy�

1
n�A�ðy�1 ;y?Þ;

�n?ð1; fy?; 0?gÞ � Pe
�ig

R
y?
0?

dy0?n
�

?A�ð1;y0?Þ;
(2)

where P indicates the path ordering and the direction n? is
pointed from 0? to y?. Here we define the light-cone
vectors, n� ¼ ðnþ; n�;n?Þ ¼ ð0; 1; 0?Þ and �n� ¼
ð1; 0; 0?Þ, which project out the light-cone components of
any four-vector V� as V � n ¼ Vþ and V � �n ¼ V�.

For the DY, hðp; ~SÞ þ h0ðp0Þ ! ��ðQÞ½! ‘þ‘�	 þ X,
the factorized TMD quark distribution is given by

fDY
q=h" ðx;k?; ~SÞ¼

Z dy�d2y?
ð2�Þ3 eixp

þy��ik?�y?hp; ~Sj �c ð0�;0?Þ

��y
n ðf�1;0g;0?Þ�y

n?ð�1;fy?;0?gÞ�
þ

2

��nðf�1;y�g;y?Þc ðy�;y?Þjp; ~Si (3)

where the past pointing gauge links were caused by the
initial-state interactions of DY production [10]. From
Eqs. (1) and (3), it is easy to show that the collinear quark
distributions are process independent,

Z
d2k?fSIDISq=h" ðx;k?; ~SÞ ¼

Z
d2k?fDYq=h" ðx;k?; ~SÞ; (4)

if the same renormalization scheme was used for the
ultraviolet divergence of the k? integration.

Let j�i ¼ jp; ~Si and h�j be equal to the rest of the
matrix element in Eq. (1) [9]. From the parity and time-
reversal invariance of QCD, h�Pj�Pi ¼ h�j�i and
h�Tj�Ti ¼ h�j�i, where j�Pi and j�Pi, and j�Ti and
j�Ti are the parity and time-reversal transformed states
from the states j�i and j�i, respectively, we derive

fSIDIS
q=h" ðx;k?; ~SÞ ¼ fDY

q=h" ðx;k?;� ~SÞ (5)

and conclude that the spin-averaged TMD quark distribu-
tions are process independent. Following the notation of
Ref. [18], we expand the TMD quark distribution as

fq=h" ðx;k?; ~SÞ�fq=hðx;k?Þþ 1
2�

Nfq=h" ðx;k?Þ ~S � ðp̂� k̂?Þ;
(6)

where k? ¼ jk?j, p̂, and k̂? are the unit vectors of ~p and
k?, respectively, fq=hðx; k?Þ is the spin-averaged TMD

distribution, and �Nfq=h" ðx; k?Þ is the Sivers function

[15]. Substituting Eq. (6) into Eq. (5), we obtain

�NfSIDIS
q=h" ðx; k?Þ ¼ ��NfDY

q=h" ðx; k?Þ; (7)

which confirms the Collins’ prediction [10].
We define the gauge invariant TMD gluon distribution in

SIDIS and in DY by replacing the quark operator
�c ð�þ=2Þc in Eqs. (1) and (3) by the gluon operator
Fþ�Fþ�ð�g��Þ, and the gauge links by those in the ad-

joint representation of SU(3) color [21]. From the parity
and time-reversal invariance of the matrix elements of the
TMD gluon distribution, we find, like Eq. (5),

fSIDIS
g=h" ðx;k?; ~SÞ ¼ fDY

g=h" ðx;k?;� ~SÞ: (8)

Applying Eq. (6) to the gluon TMD distribution, we derive
the same time-reversal modified universality for the gluon
Sivers function,

�NfSIDIS
g=h" ðx; k?Þ ¼ ��NfDY

g=h" ðx; k?Þ: (9)

The sign change of the Sivers function is a property of the
gauge invariant TMD parton distributions.
III. Lepton SSAs from W production.—The SSAs of W

production at RHIC, AðpA; ~S?Þ þ BðpBÞ ! W
ðqÞ þ X,
were proposed in Refs. [22] to measure the Sivers function.
However, it is difficult to reconstruct W bosons by current
detectors at RHIC.We propose to use the SSAs of inclusive
high pT lepton from the decay ofW bosons to measure the
Sivers function.
The leading order (LO) spin-averaged W cross section,

in terms of the TMD factorization, is given by

d�AB!W

dyWd
2q?

¼ �0

X
a;b

jVabj2
Z

d2ka?d2kb?fa=Aðxa; ka?Þ

� fb=Bðxb; kb?Þ�2ðq? � ka? � kb?Þ; (10)

where yW is theW rapidity, �0 ¼ ð�=3Þ ffiffiffi
2

p
GFM

2
W=s is the

lowest order partonic cross section with the Fermi weak
coupling constant GF and s ¼ ðpA þ pBÞ2,

P
ab runs over

all light (anti)quark flavors, Vab are the Cabibbo-
Kobayashi-Maskawa matrix elements for the weak inter-
action. The parton momentum fractions in Eq. (10) are
given by

xa ¼ MWffiffiffi
s

p eyW ; xb ¼ MWffiffiffi
s

p e�yW (11)

to the leading power in q2?=M
2
W . The LO spin-dependentW

cross section, ��ð ~S?Þ ¼ ½�ð ~S?Þ � �ð� ~S?Þ	=2, is simi-
larly given by
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d��ð ~S?ÞA"B!W

dyWd
2q?

¼�0

2

X
a;b

jVabj2
Z
d2ka?d2kb? ~S? �ðp̂A

� k̂a?Þ�NfDY
a=A" ðxa;ka?Þfb=Bðxb;kb?Þ

��2ðq?�ka?�kb?Þ: (12)

The SSA of W production is then defined as

AðWÞ
N � d��ð ~S?ÞA"B!W

dyWd
2q?

=
d�AB!W

dyWd
2q?

; (13)

whose sign depends on the sign of the Sivers function and

the direction of the spin vector ~S?.
To evaluate the SSA in Eq. (13), we use the parametri-

zation of TMD parton distributions in Ref. [18],

fq=hðx; k?Þ ¼ fqðxÞ 1

�hk2?i
e�k2?=hk2?i; (14)

�NfSIDIS
q=h" ðx; k?Þ ¼ 2N qðxÞhðk?Þfq=hðx; k?Þ; (15)

hðk?Þ ¼
ffiffiffiffiffi
2e

p k?
M1

e�k2?=M1 ; (16)

where fqðxÞ is the standard unpolarized parton distribution
of flavor q, hk2?i andM1 are fitting parameters, andN qðxÞ
is a fitted distribution given in Ref. [18]. By carrying out
the integration d2ka?d2kb? in Eqs. (10) and (12) analyti-
cally, we obtain,

AðWÞ
N ¼ ~S? �ðp̂A�q?Þ

� 2hk2si2
½hk2?iþhk2si	2

e�½ðhk2?i�hk2s iÞ=ðhk2?iþhk2s iÞ	ðq2
?=2hk2?iÞ

ffiffiffiffiffi
2e

p
M1

�
P

ab jVabj2½�N aðxaÞ	faðxaÞfbðxbÞP
ab jVabj2faðxaÞfbðxbÞ

;

(17)

where hk2si ¼ M2
1hk2?i=½M2

1 þ hk2?i	 and the ‘‘–’’ sign in

front ofN aðxaÞ is from Eq. (7). For our numerical predic-
tions below, we work in a frame in which the polarized

hadron A moves in the þz direction, choose ~S?, q? along
the y and x direction, respectively, and the GRV98LO par-
ton distribution [23] for fqðxÞ evaluated at MW to be con-

sistent with the usage of the TMD distributions of
Ref. [18].

In Figs. 1 and 2, we plot the AN from Eq. (17) at
ffiffiffi
s

p ¼
500 GeV. TheW asymmetry is peaked at qT � MW and is

much larger than that of DY production [19]. This is
because the u and d Sivers functions have an opposite
sign, and they partially cancel each other in their contri-
bution to the DY asymmetry, while they contribute to the
Wþ and W� separately. The large W� asymmetry is
caused by a large d Sivers function [18]. The negative d
Sivers function in SIDIS gives the positiveW� asymmetry.
The big difference in the rapidity dependence of SSA of
Wþ and W� production in Fig. 1 is also related to the
strong flavor dependence of antiquark Sivers functions
from Ref. [18]. Therefore, the rapidity dependence in
Fig. 1 provides excellent information for the flavor sepa-
ration as well as the functional form of the Sivers function
if we could reconstruct the W bosons.
Integrating over (anti)neutrino from the W decay, we

obtain the leading order cross section for the production of
leptons of rapidity y and transverse momentum p?,

d�A"B!‘ðpÞð ~S?Þ
dyd2p?

¼ X
a;b

jVabj2
Z

dxad
2ka?

�
Z

dxbd
2kb?fDYa=A" ðxa;ka?; ~S?Þ

� fb=Bðxb; kb?Þ 1

16�2ŝ
jMab!‘j2

� �ðŝþ t̂þ ûÞ; (18)

where ŝ, t̂, and û are the Mandelstam variables and the
leading order partonic scattering amplitude square,

jMab!‘j2, is given by

8ðGFM
2
WÞ2

3

û2

ðŝ�M2
WÞ2 þM2

W�
2
W

(19)

for partonic channels ab ¼ d �u, s �u, �du, �su, or by the same
one with the û2 replaced by t̂2 for the rest light flavor
channels ab ¼ �ud, �us, u �d, u�s. �W in Eq. (19) is the W
leptonic decay width. Substituting Eq. (6) into Eq. (18), we
derive both the spin-averaged and spin-dependent cross
sections, from which we evaluate the SSAs of inclusive
lepton production from W decay numerically.
In Figs. 3 and 4, we present our predictions for the

inclusive lepton SSAs from the decay ofW bosons at
ffiffiffi
s

p ¼
500 GeVwith ~S?, p? along y and x direction, respectively.
The lepton SSAs inherited all key features of the W asym-
metry in Figs. 1 and 2. Although the W decay diluted the
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FIG. 1. AN as a function of W-boson rapidity.
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FIG. 2. AN as a function of W-boson transverse momentum.
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size of the asymmetry, the lepton asymmetry is measurable
at RHIC for a good range of rapidity. The difference in
rapidity dependence in Fig. 3 could provide the excellent
information on the Sivers functions and their flavor sepa-
ration. In Fig. 4, the lepton SSAs are sharply peaked at
pT � 41 GeV, because the decay W boson has qT �
1 GeV at RHIC, which should help control the potential
background.

IV. Summary and conclusions.—In summary, we have
derived the time-reversal modified universality for both
quark and gluon Sivers functions from the parity and
time-reversal invariance of the gauge invariant matrix ele-
ments that define the TMD parton distributions. We con-
firm the Collins’ prediction for the sign change of the quark
Sivers function in SIDIS and in DY [10]. The sign change
of the Sivers function in SIDIS and in DY is a natural
property of the gauge invariant TMD parton distributions
in QCD. The corresponding sign change of the SSAs, if
they could be factorized in terms of these TMD parton
distributions, is a fundamental prediction of QCD.

We have calculated, in terms of the TMD factorization,
the SSAs of W production as well as inclusive lepton
production from the decay of W bosons in polarized
proton-proton collision at RHIC energy. We find that
although the asymmetry is diluted from the W decay, the
lepton SSAs is at the level of several percent and measur-
able for a good range of lepton rapidity at RHIC. Because
the lepton asymmetry is sharply peaked at the pT �
41 GeV, the potential background could be strongly sup-
pressed. Although both the lepton SSA discussed in this
Letter and the SSA of DY [19] could test the sign change of
the Sivers function, the lepton SSA with a good rapidity

coverage could provide the test for individual quark flavor
because of the weak interaction and our ability to measure
the lepton SSAs from the decay of both Wþ and W�. On
the other hand, the SSA of DY is proportional to a sum of
quark (antiquark) Sivers functions of all flavors weighted
by the quark fractional charge square and the normal
antiquark (quark) distribution. The sign and the size of
SSA of DY depends on the relative sign and size of
Sivers functions of all flavors. Therefore, we conclude
that this measurable lepton SSAs at high pT at RHIC is
an excellent observable for measuring the Sivers functions
of different flavors and for testing the time-reversal modi-
fied universality of the Sivers function.
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