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We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-

momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity

approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion

relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion

relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the

nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to

set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first

example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory

experiments.
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Gaining experimental insight on the quantum-gravity
realm is very challenging because most effects are ex-
pected to occur on the ultrahigh ‘‘Planck scale’’
MP ð’ 1:2� 1028 eVÞ, and leave only minuscule traces
on processes we can access experimentally. But thanks to
a large and determined effort made over the last decade [1–
9] we do have now at least a few research lines in
‘‘quantum-gravity phenomenology’’ [10] where it is estab-
lished that quantum properties of gravity and/or spacetime
structure could be investigated with the desired Planck-
scale sensitivity. Previously, progress in this direction had
been obstructed by the extreme mathematical complexity
of the most promising theories of quantum gravity, result-
ing in a debate on quantum gravity that was confined at the
level of comparison of mathematical and conceptual fea-
tures, without the ability to control the mathematics well
enough to obtain robust derivations of the physical impli-
cations of the different scenarios.

At least for one aspect of the quantum-gravity problem,
the one that concerns the possibility that spacetime itself
might have to be quantized, the nature of the debate started
to change in the second half of the 1990s when it was
established that a general implication of spacetime quan-
tization is a modification of the classical-spacetime ‘‘dis-
persion’’ relation between energy E and (modulus of)
momentum p of a microscopic particle with mass m. In
the nonrelativistic limit (p � m), which is here of interest,
this dispersion relation should take the form

E ’ mþ p2

2m
þ 1

2MP

�
�1mpþ �2p

2 þ �3

p3

m

�
; (1)

working in units with speed-of-light constant set to 1, and
including only terms at leading order in the (inverse of the)
Planck scale.

The model-dependent dimensionless parameters �1, �2,
�3 should (when different from zero) have values roughly
of order one, so that indeed the new effects are introduced
in some neighborhood of the Planck scale. Evidence that at
least some of these parameters should be nonzero has been
found most notably in loop quantum gravity [5,11,12], and,
in particular, the framework introduced in Refs. [5,13],
which was inspired by loop quantum gravity, produces a
term linear in p in the nonrelativistic limit (the effect here
parametrized by �1). Other definite proposals for the pa-
rameters �1, �2, �3 have emerged [14–17] from the
quantum-gravity approach based on ‘‘noncommutative ge-
ometry’’, and the associated research area that contem-
plates deformations of special relativity such that one
could have an observer-independent maximum value of
frequency or minimum value of wavelength. The two
most studied candidates are the ones first introduced in
Ref. [18], whose leading-order form is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
� �

MP

p2

2
(2)

and the one first introduced in Ref. [19], whose leading-
order form is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ �

MP

�
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p �m2

�
: (3)

Interestingly both of these scenarios from the side of non-
commutative geometry have the same behavior in the non-
relativistic limit, dominated by a p2=MP term of the type
here parametrized with �2. But in the ultrarelativistic limit
they have very different behavior, and this will be of
interest in a later part of our analysis.
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In addition to these examples where something definite
is expected for the parameters here of interest, which
characterize the dispersion relation in the nonrelativistic
limit, there is also a quantum-gravity literature providing
motivation for studies of the dispersion relation from a
broader perspective, but often within formalisms that are
not understood well enough to establish the functional
dependence of the correction on momentum. None-
theless, many authors (see, e.g., Ref. [12] and references
therein) have argued that our best chance of having a first
level of experimental characterization of the quantum-
gravity realm is through attempts to gain insight on the
parameters of the dispersion relation.

Unfortunately, as usual in quantum-gravity research, the
theoretically favored range of values of the parameters of
the dispersion relation translates into a range of possible
magnitudes of the effects that is extremely challenging. If
the Planck scale is the characteristic scale of quantum-
gravity effects then one expects that parameters such as �1,
�2, �3 should indeed take (positive or negative) values that
are close to 1, and then, as a result of the overall factor
1=MP, the effects are terribly small [10]. Some recent
semiheuristic renormalization-group arguments (see, e.g.,
Refs. [10,20] and references therein), have encouraged the
intuition that the quantum-gravity scale might be some-
what smaller than the Planck scale, plausibly even 3 orders
of magnitude smaller (so that it could coincide [20] with
the ‘‘grand unification scale’’ which appears to be relevant
in particle physics). This would correspond to an estimate
of parameters such as �1, �2, �3 plausibly as ‘‘high’’ as 10

3,
but usually even with this possible gain of 3 orders of
magnitude any hope of detectability remains extremely
distant.

It was therefore rather exciting for many quantum-
gravity researchers when it started to emerge that certain
observations in astrophysics could provide ‘‘Planck-scale
sensitivity’’ for some quantum-gravity scenarios [1–3,6,7].
However, these studies, which are presently being con-
ducted at the Fermi Space Telescope [21], only establish
meaningful bounds on scenarios with relatively strong
ultrarelativistic corrections, such as the proposal of
Ref. [18] [Eq. (2)] which produces a term of order
p2=MP in the ultrarelativistic regime. But, for example,
in the ultrarelativistic limit of the models of Ref. [19]
[Eq. (3)] and Ref. [5] the effects are too small to matter.

Our main objective here is to show that cold-atom ex-
periments can be used to establish meaningful bounds on
the parameters �1 and �2 that characterize the nonrelativ-
istic limit of the dispersion relation, and to discuss the
relevance of this result particularly for the scenarios first
proposed in Refs. [5,19]. The ultrahigh levels of accuracy
[22,23] achievable with atom interferometry have been
already exploited extensively in many areas of physics,
including precision measurements of gravity [24], gravity
gradients [25], and rotation of the Earth [26], and also tests
of Einstein’s weak equivalence principle [24,27], tests of

Newton’s law at short distances [28], and measurements of
fundamental physical constants [29,30]. Clearly, for our
purposes, it is very significant that these remarkable accu-
racy levels have been reached in studies of nonrelativistic
atoms.
The measurement strategy we here propose is applicable

to measurements of the ‘‘recoil frequency’’ of atoms with
experimental setups involving one or more ‘‘two-photon
Raman transitions’’ [24,31,32]. Let us initially set aside the
possibility of Planck-scale effects, and discuss the recoil of
an atom in a two-photon Raman transition from the per-
spective adopted in Ref. [32], which provides a convenient
starting point for the Planck-scale generalization we shall
discuss later. One can impart momentum to an atom
through a process involving absorption of a photon of
frequency � and (stimulated [24,31,32]) emission, in the
opposite direction, of a photon of frequency �0. The fre-
quency � is computed taking into account a resonance
frequency �� of the atom and the momentum the atom
acquires, recoiling upon absorption of the photon: � ’
�� þ ðh�� þ pÞ2=ð2mÞ � p2=ð2mÞ, where m is the mass
of the atom (e.g., mCs ’ 124 GeV for cesium), and p its
initial momentum. The emission of the photon of fre-
quency �0 must be such to deexcite the atom and impart
to it additional momentum: �0 þ ð2h�� þ pÞ2=ð2mÞ ’
�� þ ðh�� þ pÞ2=ð2mÞ. Through this analysis one estab-
lishes that by measuring �� � �� �0, in cases (not un-
common) where �� and p can be accurately determined,
one actually measures h=m for the atoms

��

2��ð�� þ p=hÞ ¼ h

m
: (4)

This result has been confirmed experimentally with re-
markable accuracy. A powerful way to illustrate this suc-
cess is provided by comparing the results of atom-recoil
measurements of ��=½��ð�� þ p=hÞ� and of measure-
ments [33] of �2, the square of the fine structure constant.
�2 can be expressed in terms of the mass m of any given
particle [32] through the Rydberg constant, R1, and the
mass of the electron, me, in the following way [32]: �2 ¼
2R1 m

me

h
m . Therefore according to Eq. (4) one should have

��

2��ð�� þ p=hÞ ¼ �2

2R1
me

mu

mu

m
; (5)

where mu is the atomic mass unit and m is the mass of the
atoms used in measuring ��=½��ð�� þ p=hÞ�. The out-
comes of atom-recoil measurements, such as the ones
with cesium reported in Ref. [32], are consistent with
Eq. (5) with the accuracy of a few parts in 109.
The fact that Eq. (4) has been verified to such a high

degree of accuracy proves to be very valuable for our
purposes as we find that modifications of the dispersion
relation require a modification of Eq. (4). Our derivation
can be summarized briefly by observing that the logical
steps described above for the derivation of Eq. (4) establish
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the following relationship

�� ’ Eðpþ h�þ h�0Þ � EðpÞ ’ Eð2h�� þ pÞ � EðpÞ;
(6)

and therefore Planck-scale modifications of the dispersion
relation, parametrized in Eq. (1), would affect �� through
the modification of Eð2h�� þ pÞ � EðpÞ, which compares
the energy of the atom when it carries momentum p and
when it carries momentum pþ 2h��.

Since our main objective here is to expose sensitivity to
a meaningful range of values of the parameter �1, let us
focus on the Planck-scale corrections with coefficient �1.
In this case the relation (4) is replaced by

�� ’ 2��ðh�� þ pÞ
m

þ �1

m

MP

��; (7)

and in turn in place of Eq. (5) one has

��

2��ð��þp=hÞ
�
1��1

�
m

2MP

��
m

h��þp

��
¼ �2

2R1
me

mu

mu

m
:

We have arranged the left-hand side of this equation plac-
ing emphasis on the fact that our quantum-gravity correc-
tion is as usual penalized by the inevitable Planck-scale
suppression (the ultrasmall factor m=MP), but in this spe-
cific context it also receives a sizeable boost by the large
hierarchy of energy scales m=ðh�� þ pÞ, which in typical
experiments of the type here of interest can be [24,31,32]
of order �109.

This turns out to be just enough to provide the desired
‘‘Planck-scale sensitivity’’: one easily finds that in light of
our result the mentioned cesium-atom-recoil measure-
ments the rubidium-atom-recoil measurements reported
in Ref. [34] determine ��=½2��ð�� þ p=hÞ� with accuracy
comparable to the cesium experiments of Ref. [32].
However, in the setup of Ref. [34] the rubidium atoms
had momentum p significantly higher than for the cesium
atoms in Ref. [32], and, as a consequence of the specific
dependence on p of our result, it turns out that the cesium
measurements lead to a significantly more stringent limit
on �1 than the rubidium measurements.) reported in
Ref. [32], also exploiting the high precision of a determi-
nation of �2 recently obtained from electron-anomaly
measurements [33], allow us to determine that �1 ¼
�1:8� 2:1.

From this we derive the main result we are here report-
ing, which is the bound �6:0< �1 < 2:4, established at
the 95% confidence level. This shows that the cold-atom
experiments we here considered can be described as the
first example of controlled laboratory experiments probing
the form of the dispersion relation (at least in one of the
directions of interest) with sensitivity that is meaningful
from a Planck-scale perspective. We are actually already
excluding a very substantial portion of the range of values
of �1 that could be natural from a quantum-gravity per-
spective, which, for reasons we briefly revisited above,

goes from j�1j � 1 to j�1j � 103. Our result leaves open
only the possibility of a value of �1 that lies rather close to
the bottom end of the range that would be admissible from
a quantum-gravity perspective.
Of course, studies of possible modifications of the dis-

persion relation are also of interest for the community
involved in tests of Lorentz symmetry from a broader
fundamental-physics perspective. And our bound on the
parameter �1 is also relevant for a class of modifications of
the dispersion relation that has been studied from this
broader perspective, by introducing a parameter � such
that E2 ¼ m2 þ p2 þ 2�p. For this framework the pre-
vious reference limit was established in Ref. [35], which
considered various strategies for obtaining bounds at the
level � < 10 eV. Taking into account that from E2 ¼
m2 þ p2 þ 2�p it follows that in the nonrelativistic limit
E ¼ mþ p2=ð2mÞ þ �p=m, one easily finds that our pa-
rametrization and the parametrization of Ref. [35] are
related by �1m=MP � 2�=m. And our bound on �1

amounts to the bound �3:7� 10�6 eV< �< 1:5�
10�6 eV. From this perspective one should therefore ob-
serve that the remarkable accuracy of cold-atom experi-
ments allowed us to improve on the previous best limit on
� by more than 6 orders of magnitude!
While our main results concern indeed the parameter �1,

we find appropriate to also briefly discuss the implications
of cold-atom studies for the term with coefficient �2. As
mentioned, the term with coefficient �2 in the nonrelativ-
istic limit is a common feature of the two quantum-gravity-
inpired proposals here characterized in Eqs. (2) and (3). Let
us notice that the same behavior in the nonrelativistic limit
is also found in the model of Ref. [36], whose proposal was
not motivated by quantum gravity but has been much
studied from the broader Lorentz-symmetry-test perspec-
tive. Interestingly, for these 3 models with the same de-
pendence on momentum of the correction to energy in the
nonrelativistic limit one finds completely different conse-
quences in the ultrarelativistic regime. For the model of
Eq. (2) the leading ultrarelativistic correction to energy has
behavior p2=MP and can be tightly constrained in astro-
physics [1–3]. And for the model of Ref. [36], whose
leading ultrarelativistic correction to energy is instead
linear in momentum, a similar strategy allows to set strin-
gent limits using astrophysics data [36,37]. But for the
third of these possibilities, the one of Ref. [19] [Eq. (3)],
the leading correction to energy in the ultrarelativistic limit
is only of magnitude m3=ðpMPÞ and cannot be signifi-
cantly bounded in astrophysics. The effort of constraining
the parameter �2 in the nonrelativistic limit is not a top
priority for the scenarios of Ref. [18] [Eq. (2)] and
Ref. [36], since those scenarios can be even more tightly
constrained studying their ultrarelativistic behavior, but on
the contrary for the scenario of Ref. [19] [Eq. (3)], the only
way to establish meaningful bounds is by investigating the
nonrelativistic limit.
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Following the same steps of the analysis we performed
above for the correction term with coefficient �1, it is easy
to verify that the correction term with coefficient �2 would
produce the following modification of Eq. (5):

��

2��ð�� þ p=hÞ
�
1� �2

m

MP

�
¼ �2�

2R1
me

mu

mu

m
: (8)

And in this case the experimental results reported in
Ref. [32] allow us to establish that �3:8� 109 < �2 <
1:5� 109. This bound is still some 6 orders of magnitude
above even the most optimistic quantum-gravity estimates.
But it is a bound that still carries some significance in the
broader realm of Lorentz-symmetry investigations.
According to standard quantum-spacetime arguments,
bounds on parameters such as �2 at the level of j�2j<
109 amount to probing spacetime structure down to length
scales of order 10�26 m (��2h=MP), and, while this is not
enough for quantum gravity according to the prevailing
consensus, still represents remarkably short distance scales
from a broader perspective.

Moreover our limit on �2 at the level j�2j & 109 indeed
also amounts to the best limit on the scenario for deforma-
tion of Lorentz symmetry introduced in Ref. [19], since in
the nonrelativistic limit the parameter � of Eq. (3) is
related to �2 by �2 ¼ 4�. Previous attempts to constrain
the parameter � of Eq. (3) had focused on the ultrarela-
tivistic limit of Eq. (3), and did not go beyond [38,39]
sensitivities at the level j�j & 1024.

In light of the remarkable pace of improvement of cold-
atom experiments over the last 20 years, we expect that the
sensitivities here established might be improved upon in
the near future. This will most likely translate into more
stringent bounds, but, particularly considering the values of
�1 being probed, should also be viewed as a (slim but
valuable) chance for a striking discovery. We therefore
feel that our analysis should motivate a vigorous effort
on the quantum-gravity side aimed at overcoming the
mentioned technical difficulties that presently obstruct
the derivation of more detailed quantitative predictions in
some of the relevant theoretical frameworks.
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