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In this Letter, we prove the unconditional security of the single-photon differential phase shift quantum

key distribution (DPS-QKD) protocol, based on the conversion to an equivalent entanglement-based

protocol. We estimate the upper bound of the phase error rate from the bit error rate, and show that the

DPS-QKD protocol can generate an unconditionally secure key when the bit error rate is not greater than

4.12%. This proof is the first step to the unconditional security proof of a coherent state DPS-QKD.
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Quantum key distribution (QKD) protocols are one of
the most important applications of quantum information
theory. Great effort has been devoted to proving the un-
conditional security of these protocols through noisy chan-
nels. The first QKD protocol, named the Bennett-Brassard
1984 (BB84) protocol [1], has been proven to be uncondi-
tionally secure [2,3].

In 2002, Inoue et al. proposed the differential phase
shift quantum key distribution (DPS-QKD) protocol [4],
where Alice encodes the key bits by preparing the relative
phase shifts between two consecutive pulses in 0 or � and
Bob employs a one-bit delay Mach-Zehnder (M-Z) inter-
ferometer to retrieve the key from the phase shifts. The
advantages of DPS-QKD mainly lie in its simple and
robust experimental implementation. Only one measure-
ment basis is involved in the protocol, and thus the ex-
periment requires minimum setup, namely, one source and
two detectors. Also, for the BB84 protocol, Alice should
generate a random base string to encode the key and Bob
also needs to randomly select his measurement bases.
However, in DPS-QKD, they do not need to perform these
two steps. Furthermore, DPS-QKD utilizes the relative
phases of the pulses which are not affected by the birefrin-
gence in fibers. Finally, by using coherent sources, DPS-
QKD is secure against photon-number-splitting attack,
because they can be detected [5], while the BB84 protocol
with coherent sources requires intensity modulators to
generate decoy states to prevent such an attack [6].
Thanks to these simplicities, experiments over long dis-
tances and with high bit rates have been performed [7,8].
On the other hand, whether DPS-QKD is unconditionally
secure is an important problem both from the practical and
theoretical aspects. So far, the security against limited
attacks such as the general attack for individual photons
[9] and the so-called sequential attack [10] have been
analyzed.

In this Letter, as the first important step towards the
security proof of coherent state DPS-QKD, we present
the proof of the unconditional security of DPS-QKD with

a single-photon source against the most general attacks.
This proof gives insight to the underlying security proper-
ties of DPS-QKD. By analyzing an equivalent
entanglement-based DPS-QKD, we find that the phase
error rate of each time slot can be upper bounded by the
bit error rate of the same time slot and its adjacent time
slots. Thus, the unconditional security is achieved by per-
forming privacy amplification based on the upper bound of
the phase error rate. Thanks to the equivalence, we can
apply the results to the prepare-and-measure DPS-QKD.
Before constructing the entanglement-based protocol,

we define the encoded states in the prepare-and-measure
DPS-QKD. With the single-photon source, Alice splits the
single-photon wave packet into n pulses with identical
amplitudes to form a block. Particularly, the state before

encoding the secret key is j�0i ¼ 1
ffiffi

n
p P

n
k¼1 a

y
k jvaci ¼

1
ffiffi

n
p P

n
k¼1 jDki, where ayk is the creation operator of the

pulse in the kth slot and jDki ¼ ayk jvaci. Then following

the proposal of DPS-QKD, Alice encodes an (n� 1)-bit
random secret key into this block. For an (n� 1)-bit
random but fixed integer j, we express its (n� 1)-bit
binary format as ðj1j2 � � � jn�2jn�1Þ2. Then the encoded

state of the block of a single photon is, j�ji ¼ 1
ffiffi

n
p ½jD1i þ

P

n
k¼2ð�1Þj0k�1 jDki�, where j0k ¼

P

k
l¼1 jl.

Given the above encoding scheme, we can construct the
corresponding states in the entanglement-based protocol.
The equivalence between the entanglement-based and the
prepare-and-measure protocols is obtained by following
the technique by Shor and Preskill [3]. For each encoding
block Alice prepares additional (n� 1) qubits which are
stored without disturbances in her own quantum memory
throughout the protocol. These qubits, labeled with
A1; � � � ; An�1, are entangled with a single photon, labeled
B in the corresponding block, which are described as

j�i ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2n�1
p X

2n�1

j¼0

½ðjj1iA1
� � � jjn�1iAn�1

Þ � j�jiB�: (1)
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On Bob’s side, after he receives the single photons, he
first applies quantum nondemolition (QND) measurement
to determine the number of incoming photons in a block
and discard the blocks with multi photons or the vacuum.
This step is necessary because the following entanglement
purification protocol requires a well-defined qubit on his
side. The QND measurement commutes with all other
operations on Bob’s side. Therefore, in the prepare-and-
measure protocol, Bob can replace the QND measurement
by the photon number resolving (PNR) detectors which are
capable of discriminating the vacuum, the single-photon
state, and multiphoton states. Particularly, by using two
PNR detectors, Bob only accepts the instances when one
detector obtains the single-photon state and the other one
obtains the vacuum state in one block.

Then, the single photon goes to a 1-bit delay M-Z
interferometer, shown in Fig. 1. An incoming photon state
in jDki, is split into four different photon states in the two
output ports and two consecutive time slots. Particularly,

we obtain ayk ) 1
2 ðuyk þ ivy

k þ uykþ1 � ivy
kþ1Þ, where uyk

and vy
k are the creation operators of the pulses of the

time slot k in the two output ports. For convenience, Bob
applies a �=2 phase rotation on each pulse in the bottom

output port. Given jUki ¼ uyk jvaci and jVki ¼ vy
k jvaci, the

operation of the interferometer (MDPS) on each jDki can be
written as

MDPSjDki ¼ 1
2ðjUki � jVki þ jUkþ1i þ jVkþ1iÞ: (2)

Bob further applies a hypothetical filtering operation in
order to project the single photon into a two-level state
required for the entanglement purification protocol. The
filter operation is described by a set of Kraus operators F ¼
fF1; F2; � � � ; Fng, namely, Fl ¼ jUlihUlj þ jVlihVlj, for
l ¼ 2; � � � ; n and F1 ¼ I �P

n
l¼2 Fl in which I is the iden-

tity matrix, namely, I ¼ P

nþ1
l¼1 ðjUlihUlj þ jVlihVljÞ. Note

that the projection operators commute with each other and
represent monitoring the time slots of the detection events.
Bob then publicly announces which time slot the photon
was projected to. Alice and Bob will discard the incon-
clusive blocks where Bob obtains F1. By its projection to a
certain time slot l, the photon is in a well-defined qubit

state. Particularly, we can define the Z-basis of the photon
as fjUli; jVlig, representing whether it travels along the top
or bottom output port of the interferometer. Accordingly,
we define Bob’s Pauli operators as ZBl

¼ jUlihUlj �
jVlihVlj and XBl

¼ jUlihVlj þ jVlihUlj.
Finally, Alice and Bob should tackle the eavesdropping

and the channel errors. On the one hand, when the channel
is ideal and no eavesdropping exists, it is easy to show that
Alice and Bob obtain a maximally entangled pair from
each projected qubit. Particularly, Alice discards all the
qubits on her side with the label other than l� 1, in which l
is Bob’s projection outcome. Mathematically, it is equiva-
lent to partially tracing these qubits in the state of Eq. (1).
Combining with Bob’s filter projection, Alice and Bob
share the Bell state, namely, j�þi ¼ 1

ffiffi

2
p ðj0iAl�1

� jUliB þ
j1iAl�1

� jVliBÞ.
On the other hand, if the channel is noisy or there is an

eavesdropper, Alice and Bob share a corrupted two-qubit
state. In this case, Alice and Bob employ an appropriate
entanglement purification protocol based on Calderbank-
Shor-Steane (CSS) code [11], to distill the Bell state. If the
entanglement purification protocol succeeds, the resulting
smaller set of states shared by Alice and Bob will have very
high fidelity. Using the argument that high fidelity implies
low entropy [12] or composability argument [13], Alice
and Bob can generate an unconditionally secure key by
measuring the distilled states in their own respective
Z-basis. Therefore, the key to the unconditional security
proof is whether they can estimate the bit error rate and the
phase error rate, which is necessary for choosing an appro-
priate CSS code for the successful purification. As for the
bit errors, Alice and Bob can estimate them by using test
bits. However, in the prepare-and-measure protocol, since
they do not directly measure the phase errors of the test
bits, they have to upper bound them only from the observed
quantities.
In what follows, we concentrate only on the untested

bits, and for the estimation of the phase error rate, we
appeal to Azuma’s inequality [14,15]. First, we define

pðkÞ
b;l as the probability of observing a bit error in the lth

time slot of the kth photon pair. We allow pðkÞ
b;l to be

dependent on the previous k� 1 events, in other words,
this probability is a conditional probability. Moreover, we
define Neb;l as the number of the actual bit errors in the lth
time slot after N-photon-pair emission. Similarly, we can

define the sequence pðkÞ
p;l and ep;l for the phase errors in the

lth time slot. A consequence of Azuma’s inequality states

that Pr½je�;l �
P

N
k¼1

pðkÞ
�;l

N j � �� � 2e�N�2=2, for arbitrary

positive number �, both � 2 fb; pg, and all conclusive
time slots l [15]. Therefore, if we can find the relation,
P

n
l¼2 p

ðkÞ
p;l �

P

n
l¼2 Clp

ðkÞ
b;l for certain C2; � � � ; Cn, the total

phase error rate ep ¼ P

n
l¼2 ep;l can be bounded by the

same relation, namely, ep � P

n
l¼2 Cleb;l. On the other

hand, the random sampling theory states that eb;l is close
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FIG. 1. Schematics of the 1-bit delay M-Z interferometer
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to the measured bit error rate on the test bits with a
probability exponentially close to 1 [12].

Eve’s most general attacks entangle the whole blocks
with her ancila. Focusing on one certain block, e.g., the kth
block, the attacks can be reduced to a Kraus operator acting
only on this block, by the following two steps: First, since
Azuma’s inequality requires conditional probabilities, we
suppose that Alice and Bob have performed fictitious Bell
measurements to test errors on the previous (k� 1) blocks.
We project all the previous systems according to the out-
comes and trace out the (k� 1) blocks. Second, we trace
out the ðkþ 1Þth � � � ; nth blocks and Eve’s ancilla. The

resulting operator is �kð�kÞ ¼
P

sE
ðkÞy
s �kE

ðkÞ
s , where �k is

the unperturbed state of the kth block. Because the actual
measurement outcomes and Eve’s coherent attacks are

unknown, the operator EðkÞ
s is arbitrary and dependent on

arbitrary measurement outcomes of the previous (k� 1)
blocks [15].

The linearity of the Kraus operator allows us to consider

only one of its components, EðkÞ
s ¼ ðaijÞ, an arbitrary

(n� n)-dimension matrix acting on the single-photon
state. The corrupted state of the kth block becomes

EðkÞ
s j�i. The final state after Bob’s interferometer and the

filter operation is j�ðkÞ
l i ¼ FlMDPSE

ðkÞ
s j�i. Therefore, for

this time slot, we can obtain the possibilities pðkÞ
b;l ¼

h�ðkÞ
l j 1�ZAl�1

ZBl

2 j�ðkÞ
l i and pðkÞ

p;l ¼ h�ðkÞ
l j 1�XAl�1

XBl

2 j�ðkÞ
l i,

which are conditioned on arbitrary previous events. The
calculations show that

pðkÞ
b;l ¼

1

4n
½jal�1;l�1 � al;lj2 þ jal�1;l � al;l�1j2

þ ðjal�1;1j2 þ � � � þ jal�1;l�2j2 þ jal�1;lþ1j2
þ � � � þ jal�1;nj2Þ þ ðjal;1j2 þ � � � þ jal;l�2j2
þ jal;lþ1j2 þ � � � þ jal;nj2Þ�; (3)

pðkÞ
p;l ¼

1

2n
½jal;1j2 þ � � � þ jal;l�1j2 þ jal�1;lj2 þ � � �

þ jal�1;nj2�: (4)

By observing that for any two complex numbers a

and b, jaj2þjbj2� 3þ ffiffi

5
p
2 ðja�bj2þjaj2Þ, we derive that

2n
P

n
l¼2p

ðkÞ
p;l� 4n

PN
l¼2p

ðkÞ
b;l � ½ðja1;2j2þja2;1j2Þ� ðja1;2�

a2;1j2 þja2;1j2Þ� þ ½ðjan�1;nj2 þjan;n�1j2Þ � ðjan�1;n�
an;n�1j2 þ jan�1;nj2� � ð1 þ ffiffiffi

5
p Þ=2½ðja1;2 � a2;1j2 þ

ja2;1j2Þþ ðjan�1;n�an;n�1j2þjan�1;nj2Þ� � ð1þ ffiffiffi

5
p Þ=2�

4n
P

N
l¼2p

ðkÞ
b;l, or equivalently

P

n
l¼2 p

ðkÞ
p;l � ð3þ ffiffiffi

5
p Þ�

P

n
l¼2 p

ðkÞ
b;l. It should be emphasized that the relations are

general for arbitrary matrix component and arbitrary pre-
vious measurement outcomes. Using Azuma’s inequality,
we therefore obtain

ep � ð3þ ffiffiffi

5
p ÞX

n

l¼2

eb;l ¼ ð3þ ffiffiffi

5
p Þeb; (5)

where eb ¼ P

n
l¼2 eb;l is the total bit error rate over all

conclusive time slots. The derivation clearly demonstrates
the essence of DPS-QKD in which the upper bound of the
phase error rate in certain time slot can only be estimated
by combining the bit error rates in the same and adjacent
time slots. Note that this upper bound does not apply to the
n ¼ 2 case in which the phase error rate can be as high as
50% and we have no chance to generate the secret key. This
is the case where Alice uses two orthogonal states and Eve
has free access to the information. The upper bound is valid
for n � 3 in which the states are mutually nonorthogonal
and no unambiguous state discrimination exists. This result
shares some similarity in the security proof of the Bennet
1992 protocol [16].
Combining the above three arguments, we can derive the

unconditionally secure key generation rate of the
entanglement-based DPS-QKD and the single-photon
DPS-QKD, namely,

RDPS � pDPS½1�HðebÞ �Hðð3þ ffiffiffi

5
p ÞebÞ�; (6)

whereHðxÞ is the binary Shannon entropy, namely,HðxÞ ¼
�xlog2ðxÞ � ð1� xÞlog2ð1� xÞ, and pDPS is the conclu-
sive detector click rate per pulse in DPS-QKD.
Finally, we compare the key generation rates of the

unconditionally secure BB84 protocol (RBB84) [3], DPS-
QKD against general attack for individual photons (RIND)
[9], and unconditionally secure DPS-QKD (RDPS). We
assume single-photon sources in all three protocols. In
the presence of channel losses, we express that RBB84 ¼
pBB84½1� 2HðebÞ�, and RIND ¼ pINDf�log2½1� e2b �
ð1�6ebÞ2

2 � �HðebÞg, where pBB84 and pIND are the conclu-

sive detector click rates per pulse in the corresponding
protocols. Here we adopt the result of DPS-QKD against
general attack for individual photons [9] to the case with a
single-photon source. We assume that the coding efficiency
for the bit error correction approaches to Shannon limit in
all three cases. When RBB84, RIND and RDPS hit zero, the
upper bound of the tolerable bit error rates for three pro-
tocols are found to be 11%, 6.09%, and 4.12%, respec-
tively. Note that in DPS-QKD the phase error rate is
indirectly estimated by MDPS and the filter while it is
directly estimated in the BB84 protocol. This is an essen-
tial insight we obtained in this Letter, and this poor esti-
mation results in lower error rate threshold of DPS-QKD
compared to the one of the BB84 protocol.
To simulate the resulting key generation rates, we take

the parameters from Ref. [7], where the dark count rate, the
time window and the baseline error rate are 50 Hz, 50 ps,
and 2.3%, respectively. Therefore, the dark count rate per
detector per time slot is d ¼ 2:5� 10�9. We assume that
all protocols use two detectors. So pBB84 ¼ ð�þ 2dÞ=2,
where � is the total efficiency including the channel, the
detectors and all other devices. In DPS-QKD, we further
assume that the loss event happens equally on every pulse
in the transmission, so that the probability of getting a
conclusive event is ðn� 1Þ=n. On the other hand, a dark
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count can occur in every time slot with equal probability.
Therefore, by noting that Bob obtains at most 1 photon out
of a block with n pulses, pIND ¼ pDPS ¼ �ðn� 1Þ=n2 þ
2dðn� 1Þ=n. Moreover, the bit error rates can be
modeled as eb ¼ ðe�þ dÞ=ð�þ 2dÞ for the BB84 pro-
tocol and eb ¼ ½e�ðn� 1Þ=n2 þ dðn� 1Þ=n�=½�ðn�
1Þ=n2 þ 2dðn� 1Þ=n� for DPS-QKD, where e is the base-
line error rate given above.

Figures 2(a) and 2(b) illustrate the secure key generation
rates per pulse and the energy efficiencies, namely, the
secure key generation rates per emitting photon. As ex-
pected, the unconditionally secure key generation rates and
the upper bound of the tolerable bit error rate of DPS-QKD
are lower than those of DPS-QKD against general attack
for individual photons. From Fig. 2(b), larger n has higher
energy efficiency because every photon received by Bob
has lower chance to be discarded. However, larger n will
decrease the probability of getting a signal from a pulse
and increase the dark count rate per block, and thus lead to
lower secure key rate per pulse and lower achievable dis-
tance as shown in Fig. 2(a). Based on these observations,

we find that n ¼ 3 yields the optimal secure key generation
rate per pulse and the maximum achievable distance.
In conclusion, we have proven the unconditional secur-

ity of DPS-QKDwith a single-photon source and evaluated
its secure key generation rate. The security is based on the
nonorthogonality of the encoding states for n � 3 and
Bob’s 1-bit delay operation. We hope that our uncondi-
tional security proof is a first step toward the security proof
of coherent state DPS-QKD.
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FIG. 2 (color online). Secure key generation rates per pulse (a)
and per emitting photon (b) as a function of the total loss. Red
solid line: RBB84; blue dashed line and green dash-dot line: RDPS

with n ¼ 3, 10, respectively; black dash-dot line and light blue
solid line with triangles: RIND with n ¼ 3, 10, respectively.
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