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We study the power of closed timelike curves (CTCs) and other nonlinear extensions of quantum

mechanics for distinguishing nonorthogonal states and speeding up hard computations. If a CTC-assisted

computer is presented with a labeled mixture of states to be distinguished—the most natural formula-

tion—we show that the CTC is of no use. The apparent contradiction with recent claims that CTC-assisted

computers can perfectly distinguish nonorthogonal states is resolved by noting that CTC-assisted

evolution is nonlinear, so the output of such a computer on a mixture of inputs is not a convex combination

of its output on the mixture’s pure components. Similarly, it is not clear that CTC assistance or nonlinear

evolution help solve hard problems if computation is defined as we recommend, as correctly evaluating a

function on a labeled mixture of orthogonal inputs.
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Introduction.—Physicists and science fiction writers
have long been interested in time travel, wherein a person
or object travels backward in time to interact with a
younger version of itself. The many studies of such closed
timelike curves have led to the general conclusion that,
while conditions for their creation may not arise in typical
astrophysical or cosmological settings, in principle there
seems to be no barrier to their existence [1–5].

In the context of quantum computation, the most widely
accepted model of time travel, due to Deutsch [6], involves
a unitary interaction U of a causality-respecting (CR)
register with a register that traverses a closed timelike
curve (CTC). The physical states of Deutsch’s theory are
the density matrices of quantum mechanics, but the dy-
namics are augmented from the usual linear evolution. For
each initial mixed-state �CR of the CR register, the CTC
register is postulated to find a fixed-point �CTC such that

Tr CRðU�CR � �CTCU
yÞ ¼ �CTC: (1)

The final state of the CR register is then defined in terms of
the fixed point as

�0
CR ¼ TrCTCðU�CR � �CTCU

yÞ: (2)

The induced mapping �CR ! �0
CR is nonlinear because the

fixed point �CTC depends on the initial state �CR. The
nonlinear evolution leads to various puzzling consequen-
ces considered below, but, because the fixed point is al-
lowed to be a mixed state, it always exists [6], thereby
avoiding the notorious ‘‘grandfather paradox’’ wherein
some initial conditions lead to no consistent future [7].

In Deutsch’s model, the mixed-state fixed-point �CTC

explicitly begins in a product state with the CR register.
Thus, the Universe may evolve from a pure to mixed state,
which is not normally allowed by quantum mechanics. To
recover a pure state picture, Deutsch appeals to the multi-

verse of the many-worlds interpretation, where the CTC
system in our world is entangled with other worlds’ CTC
and CR systems. This kind of mixed state runs counter to
the ‘‘church of the larger Hilbert space’’ philosophy appli-
cable to CTC-free quantummechanics, which views mixed
states as always being subsystems of larger entangled pure
systems in this universe.
To illustrate Deutsch’s model, consider putting half of a

maximally entangled state into a CTC (Fig. 1). There are
now two causality-respecting qubits, A and B, and a single

FIG. 1 (color online). Sending half of an EPR pair along a
CTC. (a) Single universe picture. An EPR pair, j�iAB ¼ 1ffiffi

2
p �

ðj0iAj0iB þ j1iAj1iBÞ, is created in the distant past. At time t0, a
qubit emerges from the CTC and at time t1, half of the EPR pair
is put into the CTC. According to Deutsch’s prescription, the
density matrix of the CTC system at t0 is equal to the CTC
density matrix at t1. Nevertheless, the joint state at any time after
t1 is a product state. (b) Multiple universe picture. In both
universes, an EPR pair is created in the distant past. At time
t0, a qubit emerges from the CTC in each universe. At time t1 in
each universe, half of an EPR pair is put into the CTC and goes
back in time to emerge at t0 in the other universe. Each EPR
particle originally created is entangled with a partner in the other
universe and in a product state with the other particle in its own
universe.
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CTC qubit. The unitary of Eq. (1) is the swap operation
between CTC and B. Finding the fixed point gives �CTC ¼
1
2 I, which along with Eq. (2) gives a final state of �0

AB ¼
1
4 IA � IB on the causality-respecting qubits. Strangely, not

only does the CTC cause an evolution from a pure to mixed
state, but the simple act of sending B along a CTC disen-
tangles it from A. A pure state is recovered by considering
both our initial universe and the universe with which the
CTC interacts.

Distinguishing states.—Our work is motivated by [10],
which explored the benefits of CTCs for state discrimina-
tion. There it was shown that for any pair of pure states,
j�0i and j�1i, there is a CTC-assisted circuit that maps
these to orthogonal states j0i and j1i, respectively. This
was interpreted as distinguishing nonorthogonal states, an
impossibility in standard quantum mechanics. It was also
shown that the linearly dependent set fj0i; j1i; jþi; j�ig,
where j�i ¼ 1ffiffi

2
p ðj0i � j1iÞ, can be mapped to four or-

thogonal states using a CTC. Interpreting this as distin-
guishing these states leads us to a truly remarkable
conclusion: a CTC can be used to distinguish I=2 ¼ 1

2 j0i�h0j þ 1
2 j1ih1j from I=2 ¼ 1

2 jþihþj þ 1
2 j�ih�j. Appar-

ently, a CTC lets us distinguish identical states. Of course,
it is not entirely clear what this means.

The authors of [10] knew something had gone awry, and
speculated that either their own analysis or Deutsch’s
model must be wrong. To resolve this conundrum, we
look more closely at what it means to discriminate among
quantum states. Discrimination is necessarily adversarial,
in the sense that a referee, Rob, presents the discriminator,
Alice, with a system prepared in an unknown state j�0i or
j�1i. Before Rob gives her this system, she does not know
which state he will prepare, but after some processing, she
should be able to tell Rob whether it was j�0i or j�1i.
Since Rob will choose the state according to some physical
process and must remember his choice in order to check
that Alice has succeeded, the joint state of Alice and Rob
before any distinguishing operation is

�RA ¼ X1
x¼0

pxjxihxjR � j�xih�xjA: (3)

Alice will now apply some operation to the A system. We
will say she has succeeded if the joint state afterwards is

�0
RA ¼ X1

x¼0

pxjxihxjR � jxihxjA: (4)

Our formulation of the problem may seem obvious, and
even a bit pedantic, but as we will now see, it has major
consequences for the power of CTCs: they are entirely
useless for state discrimination. To see this, suppose we
have a CTC-assisted protocol for distinguishing j�0i and
j�1i that takes a causality-respecting input A and closed
timelike curve register CTC. The causality-respecting re-
gion consists of R and A, with the fact that Alice does not
have access to R reflected in the restriction of Eq. (1) to

U ¼ IR � VA;CTC. Even without access to a CTC, because

she knows px and j�xi (though not the particular value of
x), she can solve the fixed-point problem (1) to get �CTC.
So, she can prepare a quantum state �CTC and, given a state
to distinguish on A, apply V to the joint ACTC system and
generate the same output state �0

RA as if she actually had a
CTC. In short, Alice can simulate the help of a CTC by
solving the fixed-point problem herself, eliminating any
advantage the CTC may have offered.
How do we reconcile the fact that CTCs do not improve

state discrimination with the finding of [10] that any pair of
pure states can be mapped to orthogonal outputs using a
CTC? We must be careful to avoid falling into the follow-
ing ‘‘linearity trap’’: while in standard quantum mechanics
the evolution of a mixture is equal to the corresponding
mixture of the evolutions of the individual states, in a
nonlinear theory, this is not generally true (see Fig. 2).
Thus, while the circuit of [10] (see Fig. 3) can map
jxiRj�xiA ! jxiRjxiA, it does not map the mixed-state
Eq. (3) to the desired output (4) but rather to

�X1
x¼0

pxjxihxjR
�
� �0

A: (5)

The output �0
A depends on the ensemble fpx; j�xig but not

on the particular value of x. Indeed, even when presented
with a superposition of states,

P
x

ffiffiffiffiffiffi
px

p jxiRj�xiA, the cir-

cuit fails. The correlations between R and A are completely
broken, reflecting the disentangling nature of Deutsch’s
model of CTCs.
Computational consequences.—We now focus on the

computational power of closed timelike curves. Several
authors have concluded that access to CTCs would have
substantial computational benefits. For example, [11] sug-
gested that a CTC would allow a classical computer to
efficiently factor composite numbers and gave hints that a
CTC-enhanced computer may be much stronger. In [12], it

FIG. 2. The linearity trap. The action of a nonlinear mapN on
states �1 and �2 does not determine the action on their mixture.
An example of such a map is the evolution of states in the CTC
model. So, although a CTC allows nonorthogonal pure states to
be mapped to orthogonal outputs, this does not suffice to identify
the states in an unknown mixture. Similarly, the apparent power
of CTC-assisted computations is not enough to allow a user to
sample the correct output of the computation over an arbitrary
distribution of inputs.
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was argued that a CTC-assisted quantum computer could
efficiently solve NP-complete problems, a feat widely
believed impossible for a quantum computer alone. The
strongest results about computation using CTCs are those
of [13], where it was reported that the power of a poly-
nomial time bounded computer (either classical or quan-
tum) assisted by CTCs is exactly PSPACE, the class of
problems that can be solved in a space polynomial in the
problem size but potentially exponential time. Because
PSPACE is thought to contain many problems that cannot
be solved efficiently without CTC assistance, this would
suggest that CTCs are extremely useful for computation.

Analyzing the power of CTCs is a subtle business, as we
saw with state discrimination. To understand what is going
on it is useful to spell out exactly what we mean by
‘‘computing.’’ We first have to ask how the input to the
calculation is chosen. If it is chosen by some physical
process, the inputs have some probability distribution
that depends on the selection procedure. As we have
seen, for a nonlinear theory, the performance of a circuit
depends on the probability distribution over the inputs. So,
probably the strongest form of computation would be to
provide the correct answer for every input distribution.

In [13] (and implicitly in [12]), the class BQPCTC is
defined, where BQP stands for bounded error quantum
polynomial time and the subscript refers to its augmenta-
tion by a CTC. By their definition, an algorithm succeeds if
it gives the correct answer on every pure state input. In fact,
in all previous work on computation with CTCs it is shown
that for a fixed pure state input (and even for all pure state
inputs), the proposed circuit reaches the correct output.
However, to argue that it follows that a physical computer
would work on every input distribution would be to fall
prey to the linearity trap.

It is easy to check that the circuits of [12,13] for com-
puting a function FðxÞ, when applied to a uniform mixture
of inputs (with an external referee remembering which one
has been supplied), do not generate the state

1

X

XX
x¼1

jxihxjR � jFðxÞihFðxÞjA

but give a product state similar to Eq. (5). The output of the
circuit is uncorrelated with the input. Thus, we believe
claims that a quantum computer with CTC assistance can
efficiently solve NP-complete and PSPACE-complete
problems are dubious, at least for the natural definition of
computation as the ability to find the correct output no
matter how the input is chosen.
Given their definition of BQPCTC, the arguments in

[12,13] are valid, but this definition is problematic because
it implicitly limits the computer to operating on a single
input rather than a range of possible inputs. The physical
interpretation of a single input might be that one has made
a firm and unwavering decision to use a CTC to solve a
particular problem (e.g., whether black has a winning
strategy in Go), rather than a class of problems, as is usual
in computational complexity theory. This decision may as
well be taken to have existed since the beginning of time,
and cannot depend on any other part of the universe. Only
then will the CTC-assisted computer give the desired re-
sult. There is no physical problem with this, as it is equiva-
lent to the universe having been created with special
objects containing answers to particular questions, but it
is not very appealing in terms of the common meaning of
computation. For example, one might be disappointed by a
Go computer claiming to know the winner of the standard
19� 19 game but unable to shed any light on variants
using boards of other sizes.
Thus, we suggest a new complexity class BQPPCTC,

whose definition is identical to that of BQPCTC of [13],
except that the computer must produce correctly correlated
mixtures of input-output pairs for all labeled input distri-
butions (and the input is supplied as a string rather than a
circuit). We do not know whether BQPPCTC is stronger
than the unassisted BQP. Since the CTC fixed point is
uncorrelated with the inputs to a circuit, it seems like a
fairly weak resource, akin to ‘‘quantum advice’’ [14,15].
Fortunately, the argument in [13] that BQPCTC � PSPACE
holds for our definition of computing, so at least we know
that BQPPCTC is in PSPACE.
Similar arguments apply to classical complexity classes

like P and BPP in the presence of CTCs. If computation is
defined in the natural manner we recommend, CTCs have
not been shown to enlarge any of these classes.
General nonlinear theories.—Weinberg has proposed a

general approach for adding nonlinearities to quantum
mechanics [16,17]. It was argued almost immediately
that the theory has pathological properties. Notably,
[18,19] suggested that the theory gives faster than light
communication. Moreover, modification to eliminate this
problem gives communication between branches of the
wave function, dubbed the ‘‘Everett Phone’’ [18]. It was
also argued [20] that it violates the second law of thermo-
dynamics. Finally, [21] argued that any nonlinear version
of quantum mechanics allows the efficient solution of
NP-complete and #P-complete problems.
In the follow-up work to [16,17]—the instantaneous

communication of [18,19], the second law violation of

FIG. 3. The state discrimination circuit of [10]. The circuit on
A and CTC is designed to distinguish pure states j0i and jc i. U
is chosen with Ujc i ¼ j1i which leads to fixed points j0ih0j
when j0i is input and j1ih1j when jc i is input. However, faced
with the task of distinguishing an unknown mixture labeled by R
as in Eq. (3), the output �0

RA ¼ �R � �0
A. The output of the

circuit is independent of the identity of the state.
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[20], and the computational speed-up of [21]—the argu-
ments proceed by considering the evolution of some pure
state, then inferring the induced evolution of their mixture.
It is the linearity trap again. For example, just as the CTC-
circuits of [12,13] fail on a mixed state, the circuits of [21]
using the nonlinearities of [16–18] give outputs that are
uncorrelated with their inputs when applied to a labeled
mixture, resulting in no computational speed-up. Because
the linearity trap is so enticing, we propose a rule of thumb
for dealing with nonlinear theories:

The Principle of Universal Inclusion: The evolution of a
nonlinearly evolving system may depend on parts of the
universe with which it does not interact.

This principle reflects the fact that (1) calculations
ignoring any part of the universe invite the linearity trap,
and (2) theories formulated only on subsystems are incom-
plete. The parts of the universe that are perilous to ignore in
the nonlinear theories above are the systems used to select
inputs to computational or information theoretic problems.
In linear quantum mechanics, this causes no problems
because for an evolution N , we have

I �N
�X

i

pijiihij ��i

�
¼ X

i

pijiihij �N ð�iÞ (6)

but in other theories this is not so. Perhaps this is what
Polchinski [18] was driving at in his discussions of the
‘‘Everett phone,’’ cautioning against ‘‘treat[ing] macro-
scopic systems as though they begin in definite macro-
scopic states’’ instead of considering their entire histories.

Discussion.—Much of the apparent power of CTCs and
nonlinear quantum mechanics comes from analyzing the
evolution of pure states, and extending these results line-
arly to find the evolution of mixed states. However, be-
cause mixed states do not have unique decompositions into
pure states, this does not give an unambiguous rule for
evolution. Indeed, the very nature and meaning of mixed
states may be ill defined in such theories. One could
potentially resolve this problem by including additional
degrees of freedom identifying the ‘‘correct’’ decomposi-
tion of mixed states, which would restore the power of
CTCs. Unfortunately, this resolution does not reduce to
standard quantum mechanics far from any CTC. We find it
more rewarding to concentrate on theories that do, such as
Deutsch’s formalism. In such theories, we can, far from the
CTCs, unambiguously define initial and final mixed states
for the tasks of state discrimination and computation. We
then find that CTCs do not seem to help much in their
accomplishment.

Besides [6,16–18], there are several models for CTCs
and nonlinear quantum mechanics [8,22–26]. Their infor-
mation processing power is not known, and our work
underscores the necessity of clear and well-motivated defi-
nitions of the tasks under consideration in any such study.

The reported pathological behavior of nonlinear quan-
tum mechanics could have been construed as explaining
why nature chose standard linear quantum mechanics. Our

findings that many of these behaviors do not survive care-
ful scrutiny suggest that a well-behaved nonlinear theory
may be possible. In fact, as pointed out in [18], we could in
principle have large nonlinearities in a global theory that
have little or no consequence for experiments on small
systems. It would have been nice to rule out nonlinearity by
causality or a prohibition on computational extravagance,
but it seems that we cannot.
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