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When a system undergoes a quantum phase transition, the ground-state wave function shows a change

of nature, which can be monitored using the fidelity concept. We introduce two quantum Monte Carlo

schemes that allow the computation of fidelity and its susceptibility for large interacting many-body

systems. These methods are illustrated on a two-dimensional Heisenberg model, where fidelity estimators

show marked behavior at two successive quantum phase transitions. We also develop a scaling theory

which relates the divergence of the fidelity susceptibility to the critical exponent of the correlation length.

A good agreement is found with the numerical results.
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What happens to the ground-state (GS) wave function
when a physical system goes across a quantum phase
transition (QPT)? Rooted in quantum information theory,
the fidelity approach [1,2] provides an interesting global
answer in terms of the overlap between the GS of the
system at two different values of the driving parameter.
The basic idea, the precursor to which may be found in
Anderson’s orthogonality catastrophe [3], is that quantum
states become more orthogonal close to a quantum phase
transition. The resulting fidelity drop can then provide a
useful probe to detect the QPT. This is particularly inter-
esting as the fidelity is a global, model-independent quan-
tity that incorporates all the information contained in the
GS wave functions. This is opposite to other usual ap-
proaches to phase transitions, which often need an input
such as the knowledge of a specific order parameter.

Consider the Hamiltonian

H ¼ H0 þ �H� (1)

with H� acting as a perturbation to H0. The fidelity
Fð�1; �2Þ is defined as the modulus of the overlap between
the GS of H at two different values of �:

Fð�1; �2Þ ¼ jhc �1

0 jc �2

0 ij:
Suppose that the system undergoes a QPT for a value �c of
the driving parameter. We expect the fidelity to have a sin-
gular behavior when either �1 or �2 are close to �c, es-
pecially if the difference �� ¼ �2 � �1 is small [1]. When
�� ! 0, the fidelity is dominated by its leading term, the

fidelity susceptibility �F [4], with F ’ 1� ��2

2 �F.

When H describes a many-body system, computations
ofF or�F are complicated. Besides a few analytical results
on specific models [2], the main effort has been put into
their numerical evaluation. Exact diagonalization (ED) and
tensor-network (TN) methods [5]—including density ma-
trix renormalization group (DMRG) [6]—have been the
most widely used techniques in that respect, even though
they suffer from several caveats. The ED method needs the
full computation of the GS wave function and is therefore

limited to small systems. TN methods provide a variational
ansatz for the GS wave functions, allowing a straightfor-
ward computation of overlaps. This ansatz turns out to be
excellent for one-dimensional systems, where DMRG [6]
in particular has proved its full strength. Recently, several
TN based works studied two-dimensional (2d) systems and
their fidelity properties [7]. However, these methods re-
main variational and may fail in correctly capturing the GS
properties of complex many-body Hamiltonians in d > 1,
especially close to a QPT.
In this Letter, we present two different quantum

Monte Carlo (QMC) schemes which allow an exact (albeit
stochastic) computation of the fidelity F and its suscepti-
bility �F. We apply these methods to the antiferromagnetic
(AF) Heisenberg spin model on a 2d lattice. Varying one
exchange coupling in the spin model causes two successive
phase transitions, both of which are found to be captured
by the fidelity and its susceptibility. In passing, we derive a
scaling theory for the divergence of �F at a second-order
QPT. The two schemes benefit from the power of QMC
methods, which allow us to treat very large systems in any
dimension. The first scheme, which calculates F, is appli-
cable to all AF systems admitting a singlet GS. The second
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FIG. 1 (color online). (a) CaVO lattice with nearest-neighbor
bonds of type � (dashed lines) and 0 (solid lines). (b),(c) Typical
VB states on the CaVO lattice. (d) Overlap graph of previous VB
states forming two loops.
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scheme for �F is even more general and can be applied to
several many-body problems. This opens a novel path for
the fidelity approach to QPT. These techniques are only
efficient when the underlying QMC method is, i.e., when
there is no sign problem.

Model.—The schemes are illustrated on the spin-1=2
Heisenberg Hamiltonian

H ¼ H0 þ �H� ¼ X
hiji0

Si � Sj þ �
X
hiji�

Si � Sj (2)

on the CaVO lattice [8], a 1=5th depleted square lattice (see
Fig. 1). The first sum runs over nearest-neighbor spins on 0
bonds (solid lines in Fig. 1) while the second is over �
bonds (dashed lines). This lattice structure can be found in
the AF compound CaV4O9 (hence the lattice name), even
though the interactions are more complex in the real com-
pound [9]. Varying the coupling � allows the occurrence of
two QPTs separating an intermediate Néel-ordered AF
phase from, respectively, a low-� plaquette and a high-�
dimer phase [8,10]. H conserves the total spin of the
system and, in particular, AF interactions � > 0 lead to a
singlet GS.

Fidelity measurements.—Measuring the fidelity seems at
first glance easy within a standard projection QMC scheme
[11]. Decomposing the ground state jc �

0 i ¼
P

iaij’�
i i in

the simulation basis fj’ig, one generates representatives
j’�

i i (i.e., in proportion of jaij) of the GS via the projection
scheme for two different values of �. The problem comes
from the fact that the QMC estimate of the fidelity

h’�1

i j’�2

i i will vanish most of the time in the commonly
used orthogonal basis, leading to a serious statistical prob-
lem. However, when the GS is a singlet, it can be decom-
posed in the valence bond (VB) basis, which has a crucial
nonorthogonality property. Indeed, any two VB states al-

ways have a nonzero fidelity F ¼ jh’1j’2ij ¼ 2N‘�N=2

where N‘ is the number of loops obtained by superimpos-
ing the two VB states (see Fig. 1), and N the total number
of spins. This property solves the statistical problem and
allows an efficient computation of the fidelity.

More specifically, we work with a VB projector loop
algorithm recently proposed by Sandvik and Evertz [12].
To avoid the sign problem, we simulate nonfrustrated AF
on bipartite lattices, which leads to real positive values of
coefficients ai � 0 and of VB overlaps h’1j’2i> 0. In the
VB loop algorithm [12], two VB representatives j’Li and
j’Ri of the ground state are generated by propagating two
initial VB states. Simulating at the same time two different
physical systems with couplings �1 and �2 allows a QMC
estimator of the square of the fidelity:

F2ð�1; �2Þ ¼ h’�1
L j’�2

R ih’�1
R j’�2

L i
h’�1

L j’�1

R ih’�2

L j’�2

R i :

Fð�1; �2Þ can be computed for any value of �1 and �2 for
all models that can be simulated with VB QMC methods.

In the following, we illustrate this method for the
Heisenberg model on the CaVO lattice [Eq. (2)]. The

unit cell contains 4 spins, and we simulated square samples
with L� L unit cells (total number of spins N ¼ 4L2) up
to L ¼ 16, using periodic boundary conditions. For such
large systems, the fidelity essentially vanishes for all �1 �
�2. As suggested in Ref. [13], we compute the fidelity per

site fð�1; �2Þ ¼ Fð�1; �2Þ1=N, which is well behaved as
N ! 1.
Our data for the fidelity per site are presented in Fig. 2.

Around the diagonal where fð�; �Þ ¼ 1, we notice the
appearance of two pinch points, roughly around �1

c 2
½0:8; 1:1� and �2

c 2 ½1:5; 1:8�. It has been argued that these
features are characteristic of continuous QPT [13] and our
results are in agreement with the two well-known second-
order QPTs in this model. Far enough away from these two
critical regions we notice that there is no significant change
of f when N ! 1. Within the critical regions f drops
faster with system size. Given our statistical errors (up to
2% for the chosen range of �), we cannot however provide
more precise ranges for the critical points. To locate more
accurately the QPT, we now turn to the leading correction
of fidelity around the diagonal �1 ¼ �2.
Fidelity susceptibility.—For �� ! 0, we consider the

fidelity susceptibility �F which can be expressed [4] as
the imaginary-time integral �F ¼ R1

0 �½hH�ð0ÞH�ð�Þi �
hH�ð0Þi2�d�. This definition offers a natural extension to

FIG. 2 (color online). Fidelity per site f as a function of �1 and
�2 for different system sizes. Expansion power n of H in the VB
QMC method is n=N ¼ 20 for N � 122, 10 for N ¼ 162 and 4
for N � 242. � range is [0, 2.5] for N � 162 and [0.5, 2] for N �
242. Resolution �� for the plots is 0.02 for N ¼ 162, 0.01
otherwise.
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finite temperature T ¼ 1=�:

�Fð�Þ ¼
Z �=2

0
�½hH�ð0ÞH�ð�Þi � hH�ð0Þi2�d� (3)

and �F ¼ lim�!1�Fð�Þ. This definition of �Fð�Þ differs
from the Bures metric ds2 usually defined for mixed states
[14], even though both have the same T ¼ 0 limit.
However, one can prove [15] that ds2=2 � �Fð�Þ � ds2,
showing that both quantities scale in the same way.

An advantage of Eq. (3) is that �Fð�Þ can be computed
within a QMC stochastic series expansion (SSE) formalism
[16,17]. Note the importance of taking �=2 as the upper
limit of the integral as the � periodicity of the path integral
would lead otherwise to incorrect results. In the SSE
formalism the partition function is expanded in powers of

�, Z ¼ P1
n¼0

ð��Þn
n! TrHn. Starting from the expression of

time-displaced correlations functions in SSE (Eq. 3.15 of
Ref. [16]), �Fð�Þ is estimated as

�Fð�Þ ¼ 1

�2

�Xn�2

m¼0

Aðm; nÞhN�ðmÞi � hN�i2=8
�
; (4)

where N�ðmÞ is the number of times two elements of H�

appear separated by m positions in the SSE sequence [16]
and N� the total number of appearance of elements of H�.

The amplitude Aðm;nÞ¼ ðn�1Þ!
ðn�m�2Þ!m!

R1=2
0 d��mþ1ð1�

�Þn�m�2 can be calculated for all (m, n) prior to simula-
tions by numerical integration or analytically for large n
[15]. We emphasize that this formalism allows us to com-
pute �Fð�Þ for any model which can be simulated with
SSE.

The computation of �Fð�Þ can turn costly for large
systems at low T. We reached L � 16 and used � ¼ 10L

for the CaVO lattice, and limited simulations to the rele-
vant � range for the largest L and �.
Figures 3(a)–3(f) display the susceptibility fidelity per

site �F=N, showing the apparition of two peaks as a

function of �. While the N ¼ 42 and 82 samples show

rather broad feature (especially for the second peak), the
peaks are clearly emergent as system size is increased and
temperature lowered. From the position of the two peaks
for the lowest T and largest size, one obtains estimates

�1
c ¼ 0:94ð1Þ and �2

c ¼ 1:65ð1Þ for the two quantum criti-

cal points, in full agreement with QMC computations of
order parameter and spin gap [10]. Note that the positions
of the maxima of �F at finite T [see Figs. 3(e) and 3(f)]

also allow us to determine faithfully �1
c and �2

c, even

though a small shift is observed if � is too low. We there-

fore find that the fidelity susceptibility behaves as a good

global indicator of QPTs in a 2d quantum system.

Away from criticality, �F is extensive in all phases, see

Fig. 3(g). Scaling of the peaks in Fig. 3(h) reveals a power-

law divergence at criticality �Fð�cÞ=N � L!, with ! ¼
0:73ð3Þ for the first QPT and ! ¼ 0:79ð6Þ for the second
(error bars originate from the statistical error bar in the
QMC data). This agrees with the behavior of f which
develops pinch points at criticality but essentially does
not change in noncritical regions as N ! 1. The observed
symmetry of the peaks around their divergence explains
the hourglass shape of the pinch points in f. We also
understand why the second pinch point is harder to see in
Fig. 2: indeed �F is much smaller close to �2

c than to �1
c

(almost a factor of 2 in all cases).
Scaling theory.—We now account for the divergence at

the QPT by formulating a finite-size scaling (FSS) theory.
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FIG. 3 (color online). (a)–(f) Fidelity
susceptibility per site �F=N versus � for
different system sizes N and inverse
temperature �. (g) �F=N versus � for
the largest � for different N. (h) Scaling
of the two peaks of �F=N versus linear
size L (log-log scale). Lines denote
power-law fits.
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FSS theories for �F have been proposed earlier but the
relation to standard critical exponents at second-order QPT
has been missed. In the most elaborate work, Campos
Venuti and Zanardi [18] discuss the divergence of �F as
a function of the scaling dimension ½H�� of the part of the
Hamiltonian that drives the transition, i.e., how this opera-

tor scales at �c: H� � L�½H��. Here we explicitly calculate
this scaling dimension. From the definition of the correla-
tion length critical exponent �� ð�� �cÞ��, we have
½�� ¼ 1=�. Noting that ½H� ¼ z where z is the dynamical
critical exponent, we deduce ½H�� ¼ z� 1=� from Eq. (1).
Finally, we conclude from Eq. (3) that ½�F� ¼ 2½�� þ
2½H�� ¼ �2=� (see also Ref. [18]) and therefore
½�F=N� ¼ �2=�þ d, leading to the prediction:

�Fð�cÞ=N � L2=��d: (5)

This relation should hold for all second-order QPTs and
explains the superextensive behavior generally observed
for �F in terms of the usual critical exponents. From the
value � ’ 0:7112 of the universality class of the 3d Oð3Þ
model [19] to which belong both QPTs studied here, we
expect from this analysis! ’ 0:812, in agreement with our
numerical estimates.

Discussions and conclusion.—In conclusion, we pre-
sented two QMC schemes that are able to calculate with
high accuracy the fidelity and its susceptibility for quantum
interacting systems, in any dimension. This allows us to pin
down the behavior of fidelity at QPT, using one of the most
sophisticated numerical techniques for the many-body
problem. Taking the example of the Heisenberg model on
the CaVO lattice, we find that both F and �F are able to
locate the two quantum critical points present in this
system. The fidelity susceptibility acts as a more precise
indicator as criticality manifests itself as a marked peak in
�F. However, there is in principle more information con-
tained in F. This could be useful to detect transitions that
�F does not capture [20], as well as in the context of
quantum quenches [21,22].

The divergence of �F at criticality is accounted for by
the scaling theory that we have presented, where the con-
nection to the correlation length exponent of the universal-
ity class of the QPT is made. We also showed that the
generalization of �F to finite temperature [Eq. (3)] allows
us to detect criticality for moderate values of T. This is of
practical interest as simulations can be performed at a
smaller computational cost.

The method proposed for measuring �F works for any
model which can be simulated within the generic SSE
scheme [16,17], opening the door to the study of fidelity
in many different physical systems. We expect that our
scheme can be extended to measure the Loschmidt echo,
another witness of quantum criticality [23], which can be
measured experimentally in this context [24].
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Note added.—The scaling relation Eq. (5) has been

independently derived in recent preprints [22].
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