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We investigate the low-lying compression modes of a unitary Fermi gas with imbalanced spin

populations. For low polarization, the strong coupling between the two spin components leads to a

hydrodynamic behavior of the cloud. For large population imbalance we observe a decoupling of the

oscillations of the two spin components, giving access to the effective mass of the Fermi polaron, a

quasiparticle composed of an impurity dressed by particle-hole pair excitations in a surrounding Fermi

sea. We find m�=m ¼ 1:17ð10Þ, in agreement with the most recent theoretical predictions.
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The study of the low-lying excitation modes of a com-
plex system can be a powerful tool for investigation of its
physical properties. For instance, Earth’s structure has
been probed using the propagation of seismic waves in
the mantle, and the ripples in space-time propagated by
gravitational waves can be used as probes of extreme
cosmic phenomena. In ultracold atomic gases, the mea-
surement of low energy modes of bosonic or fermionic
systems has been used to probe superfluidity effects [1], to
measure the angular momentum of vortex lattices [2], and
to characterize the equation of state of fermionic super-
fluids [3,4].

In this Letter, we study the excitation spectrum of an
ultracold Fermi gas with imbalanced spin populations.
This topic was initiated in the 1960s by the seminal works
of Clogston and Chandrasekhar [5,6] and only recently
found experimental confirmation thanks to the latest devel-
opments in ultracold Fermi gases [7,8]. These dramatic
experiments have observed that when a fermionic super-
fluid is polarized through imbalance of spin populations,
the trapped atomic cloud forms a shell structure. The
energy gap associated with pairing maintains a superfluid
core where the two spin densities are equal, while the outer
shell is composed by a normal gas with imbalanced spin
densities (see Fig. 1). Here, we extend this work to the
unexplored dynamical properties of these systems and we
focus on the regime of strong interactions, where the
scattering length a is infinite. We show, in particular, that
the study of the axial breathing mode provides valuable
insight on the dynamical properties of a quasiparticle, the
Fermi polaron, that was introduced recently to describe the
normal component occupying the outer shell of the cloud
[9–14]. The Fermi polaron is composed of an impurity
(labeled 2) immersed in a noninteracting Fermi sea
(labeled 1), and is analogous to the polaron of condensed
matter physics, i.e., an electron immersed in a bath of
noninteracting (bosonic) phonons. Understanding the static
and dynamic properties of impurities immersed in an ex-
ternal bath is a paradigm of many-body systems. In addi-

tion to polaron physics, famous examples include the
Kondo effect, Higgs mechanism, or the dressed atom.
Despite its apparent simplicity, this problem remains today
very challenging in the limit of strong interactions.
According to the Landau theory of the Fermi liquid, the

low energy spectrum of the polaron is similar to that of a
free particle and can, in the local density approximation
(LDA), be recast as

E2ðr;pÞ ¼ AEF1ðrÞ þ VðrÞ þ p2

2m� þ . . . (1)

where V is the trapping potential, EF1ðrÞ ¼ EF1ð0Þ � VðrÞ
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FIG. 1 (color online). Integrated density profiles of an imbal-
anced Fermi gas. Blue (dark gray): majority atoms �n1ðzÞ; Red
(medium gray): minority atoms �n2ðzÞ; Green (light gray): dif-
ference �nd ¼ �n1 � �n2. In this latter case, the flat-top feature
signals a cancellation of the density difference at the center of
the trap, characteristic of the existence of a fully paired super-
fluid core. The superfluid (resp. minority) radius RS (resp. R2)
are marked by vertical dashed lines. The solid color lines
correspond to the prediction of Monte Carlo theories [20], the
only fit parameters being the number of atoms in each spin state,
N1 ¼ 8:0� 104, N2 ¼ 2:4� 104 for this image. The axial (ra-
dial) trap frequency is 18.6 Hz (420 Hz).
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is the local Fermi energy of the majority species, A is a
dimensionless quantity characterizing the attraction of the
impurity by the majority atoms, and m� is the effective
mass of the Fermi polaron. For a ¼ 1, A ¼ �0:61 has
been determined both experimentally [14] and theoreti-
cally [9–13], while slight disagreements still exist on the
value of the effective mass. Fixed node Monte Carlo sug-
gests m�=m ¼ 1:09ð2Þ [15], systematic diagrammatic ex-
pansion yields m�=m ¼ 1:20 [11], and analysis of density
profiles (such as Fig. 1) gives m�=m ¼ 1:06 [16].

From Eq. (1), the quasiparticle evolves in an effective
potential V�ðrÞ ¼ ð1� AÞVðrÞ. Assuming VðrÞ to be har-
monic with frequency !, the polaron is trapped in an
effective potential of frequency !� [9]:

!�

!
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

m�=m

s
: (2)

In this Letter we explore the compression mode properties
and determine the effective mass through the measurement
of the oscillation frequency !� in the axial direction
(labeled z) of a cylindrically symmetric trap.

Our experimental setup is an upgraded version of the
one presented in [17]. 7� 106 6Li atoms in the hyperfine
state jF ¼ 3=2; mF ¼ þ3=2i are loaded into a mixed mag-
netic or optical trap at 100 �K. The optical trap uses a
single beam of waist w0 ¼ 35 �m and maximum power
P ¼ 60 W operating at a wavelength � ¼ 1073 nm. The
atoms are transferred into the hyperfine ground state
j1=2; 1=2i, and a spin mixture is created by a radio-
frequency sweep across the hyperfine transition
j1=2; 1=2i ! j1=2;�1=2i. By varying the rate of this
sweep, we control the sample’s degree of polarization P �
ðN1 � N2Þ=ðN1 þ N2Þ, where N1 (resp. N2) is the atom
number of the majority (resp. minority) spin species. The
mixture is then evaporatively cooled in 6 s by reducing the
laser power to 70 mW. This is done at a magnetic field B ¼
834 G, which corresponds to the position of the broad
Feshbach resonance in 6Li where the scattering length is
infinite and where further experiments are performed.
Typical radial frequencies are !x ¼ !y � 2�� 400 Hz.

The axial confinement of the dipole trap is enhanced by the
addition of a magnetic curvature, leading to an axial fre-
quency !z � 2�� 30 Hz. Our samples contain�8� 104

atoms in the majority spin state at a temperature T &
0:09TF. The temperature is evaluated by fitting the wings
of the majority density profile outside the minority radius.
In this region, the gas is noninteracting, allowing unam-
biguous thermometry of the inner, strongly interacting part
of the cloud [18]. Here, TF is defined as the Fermi tem-
perature of an ideal gas whose density profile overlaps the
majority one in the fully polarized rim.

The two spin states are imaged sequentially using in situ
absorption imaging. To prevent heating from the scattered
photons and the strong interactions between the two spe-
cies, the duration of the two imaging pulses as well as their
separation must be short (10 �s each). By reversing the

order in which we image the two spin components, we
checked that imaging of the first species did not signifi-
cantly influence the second. Typical integrated density
profiles of the atom cloud �nðzÞ ¼ R

dxdynðx; y; zÞ, where
nðx; y; zÞ is the 3D atom density, are presented in Fig. 1.
These profiles display the characteristic features already
observed by the MIT group [18]: a flat-top structure in the
superfluid region confirming the existence of a fully paired
core satisfying the LDA [19], an intermediate phase where
the two spin species are present with unequal densities, and
an outer rim containing only majority atoms. Following
[20], we compare our density profiles to the prediction for
the equation of state of the different phases and find fairly
good agreement. In particular, we observe that the super-
fluid core disappears for polarizations P> 0:76ð3Þ. This
limit agrees well with the measurement of the MIT group
[7] but differs from the Rice group value [8]. Our data also
show no evidence for surface tension effects [8,21].
We excite the axial breathing mode by switching off the

axial magnetic trapping field for 1 ms. The effect of this
excitation is twofold: in addition to nearly suppressing the
axial confinement, the bias field is increased up to 1050 G,
where kFa��1, so that the gas is no longer strongly
interacting. This scheme provides a spatially selective
excitation of the cloud. Indeed, while the reduction of the
trapping frequency perturbs the whole cloud, the modifi-
cation of the scattering length only acts in the region where
the two spin components overlap. In the regime of strong
polarization, these two regions are well separated, leading
to a differential excitation of the two spin components.
Let us first focus on the oscillations of the majority

spin species presented in Fig. 2. Typical dynamics of the
outer radius R1ðtÞ of the majority component are exempli-
fied by Fig. 2(a). For each polarization, this time evolution
is fitted using an exponentially damped sinusoid, with

R1ðtÞ ¼ Rð0Þ
1 ½1þ A1 cosð!1tþ ’Þe��1t�, and the varia-

tions of !1 and �1 as a function of P are displayed in
Figs. 2(b) and 2(c). One remarkable feature of this graph is
the frequency plateau for polarizations P & 0:7, corre-
sponding approximately to the domain where a superfluid
core is present in the cloud. Although in this range of
parameters, the dynamics of the system is fairly complex
due to the strong coupling between the superfluid and
normal components, a simple argument based on a sum
rule approach generalizing the result of [22] allows us to
understand this property.
We describe the system by the Hamiltonian H ¼P
ip

2
i =2mþUðr1; r2; . . .Þ, where ri (resp. pi) is the posi-

tion (resp. momentum of particle i), m is the mass of the
atoms and U includes both trapping potential and inter-
atomic interaction. The compression of the trapping fre-
quency in the z direction is associated with the operator
F ¼ P

iz
2
i . Let us introduce the moments of the spectral

distribution associated with F and defined by

mk ¼
X
n�0

ðEn � E0Þkjh0jFjnij2;
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where the jni are the eigenstates of H associated with the
eigenvalue En, and j0i is the many-body ground state. We
assume that the operator F mainly couples j0i to one ex-
cited state j1i. In this case, the frequency of the breathing
mode excited by the axial compression of the trap is given

by !1 ¼ ðE1 � E0Þ=@ ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m�1

p
=@. An explicit calcu-

lation of these two moments leads to the following expres-
sion:

!2
1 ’ �2hz2i

�
@hz2i
@!2

z

: (3)

For a unitary gas, LDA imposes that the mean radius of the
cloud is given by hz2i ¼ R2

TFfðPÞ, where RTF is the radius
of an ideal Fermi gas in the same trap and with the same
atom number and f is some universal function of the
polarization [23]. Using this assumption, the calculation
of the oscillation frequency is straightforward and yieldsffiffiffiffi
12
5

q
!z ¼ 1:55!z, i.e., the hydrodynamic prediction [3,24]

for P ¼ 0, regardless of the polarization of the sample.
This argument is in good agreement with our experimental
findings [Fig. 2(b)].

At larger polarizations the frequency sharply increases
towards the collisionless value. The damping rate, very
small in the balanced superfluid, increases by a factor
�20 for higher imbalances [25]. Interestingly, as seen in
Fig. 3, this behavior is consistent with a general argument
about relaxation processes in fluid dynamics [26]. Indeed,
one can relate !1 and �1 through

!2 ¼ !2
CL þ

!2
HD �!2

CL

1þ i!�
; (4)

where ! ¼ !1 þ i�1, !HD ¼ ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
!z (resp. !CL ¼

2!z) is the hydrodynamic (resp. collisionless) frequency
and � is an effective relaxation rate.
Measurements of !1=!z in three different traps of as-

pect ratios 8.2, 9.0, and 14.5 give identical results (within
3%) for all polarizations. By contrast, the effect of tem-
perature is more pronounced: for instance at 0:12ð1ÞTF,
!1ðPÞ remains equal to the hydrodynamic prediction at all
attainable polarizations with Pmax ¼ 0:95, for a cloud of
N1 � 2� 105 majority atoms held in a trap of aspect ratio
22. This illustrates the role of Pauli blocking at the lowest
temperatures which favors collisionless behavior. This is in
contrast with the balanced gas case where the collisionless
regime was observed at higher temperature (T * TF) [27].
Let us now consider the dynamics of the minority cloud

(we recall that subscript 2 refers to the impurity atoms). We
observe that for polarizations smaller than P� 0:75, the
oscillation frequencies and damping rates of the two spin
species are equal, indicating a strong coupling between
them. By contrast, for P> 0:75, a Fourier spectrum of
R2ðtÞ reveals two frequencies [Fig. 4(a)], a generic feature
of systems with multiple phases [28,29]. The lower fre-
quency !2a is equal to the majority oscillation frequency
!1. We interpret the higher frequency !2b, whose weight
increases with polarization, as the axial breathing of the
minority atoms out of phase with the majority cloud. A
linear extrapolation of this frequency to P ¼ 1 gives the
oscillation frequency of a dilute gas of weakly interacting
polarons inside a Fermi sea at rest, !2bðP ! 1Þ ¼
2:35ð10Þ!z [Fig. 4(b)]. The uncertainty represents the
standard deviation of a linear fit taking into account the
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FIG. 3 (color online). Comparison of our experimental results
with the parametric curve (!1ð�Þ=!z, �1ð�Þ=!1ð�Þ) deduced
from prediction (4). The data in blue (dark gray) [red (medium
gray)] correspond to polarizations P< 0:8 [P > 0:8].
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FIG. 2 (color online). (a) Oscillations of the axial radius of the
majority component, for a population imbalance P ¼ 0:85ð2Þ,
beyond the Clogston limit. The solid line corresponds to a fit by
an exponentially damped sinusoid. (b) Frequency of the breath-
ing mode !1 normalized to the axial trapping frequency !z

versus polarization. The superfluid (resp. collisionless) limits

!1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
!z (resp. 2!z) are indicated by the dashed red lines.

The axial (radial) trap frequency is 28.9(1) Hz (420 Hz).
(c) Damping rate �1 versus polarization (in log scale). Note
that our data are limited to P < 0:95 due to the small minority
atom number (N2 & 2� 103) at such high polarizations.
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statistical uncertainties of the !2b measurements for each
polarization.

By identifying the breathing mode frequency!2b as 2!
�
z

and using (2), we deduce the mass of the quasiparticle:
m�=m ¼ 1:17ð10Þ. This is the first dynamic measurement
of the polaron effective mass, in good agreement with the
most recent theoretical predictions [11,15]. The previous
measurement of m� through analysis of density profiles
required an approximate equation of state for the polaron
gas, with uncontrolled accuracy [16]. Extrapolating!2bðPÞ
to P ¼ 1 allows us to overcome this issue.m� is close tom
(albeit different), a surprising feature for a system at
unitarity.

In conclusion, we have studied the low frequency
breathing modes of an elongated Fermi gas with imbal-
anced spin populations. In the presence of a superfluid
core, the majority and minority components oscillate in
phase with a frequency that is largely independent of the
spin polarization. At strong polarizations, the minority
atom oscillation reveals a second frequency, that we inter-
pret as the Fermi polaron breathing mode. Further inves-
tigations will extend our work to all values of the scattering
length. In particular, they should provide a clear signature
of the polaron-molecule transition [14,30]. The role of
interactions between polarons and damping phenomena
should also be clarified [31].
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FIG. 4 (color online). (a) Frequency power spectrum of the
minority spin state for P ¼ 0:90ð2Þ. The peak between !HD and
!CL corresponds to the oscillation in phase with the majority, the
other one to the polaron oscillation. (b) Frequency of the polaron
component as a function of polarization. All frequencies are
normalized to !z.
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