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We provide evidence that the general phenomenon of plastic depinning can be described as an

absorbing phase transition, and shows the same features as the random organization which was recently

studied in periodically driven particle systems [L. Corte et al., Nature Phys. 4, 420 (2008)]. In the plastic

flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the

fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of

these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a

simple experiment to test for this transition in systems with random disorder.
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In plastic depinning in two-dimensional (2D) systems
with random disorder, which appears in a wide range of
different systems, particle motion occurs in the form of
intricate fluctuating channels in which some particles are
mobile while others remain pinned [1,2]. This depinning
process has been studied extensively over the years in
many systems, including vortices in type-II superconduc-
tors [1–4], vortex motion in Josephson-junction arrays [5],
plastic depinning in electron crystals on random land-
scapes [6], charge transport in disordered metallic dot
arrays [7], and fluid flow on a rough substrate [8,9].
Other systems which exhibit similar behavior include the
unjamming and depinning of dislocations [10,11] and the
motion of magnetic domain walls [12]. Complex plastic
flow patterns were observed directly at the depinning tran-
sition in recent simulations and experiments on a model
system of colloids interacting with random pinning
[13,14]. Evidence that plastic depinning is a nonequilib-
rium phase transition includes the fact that the velocity
force curves scale as v / ðF� FcÞ�, where Fc is the
depinning threshold. Many simulations of filamentary
plastic flow find � � 1:5 [5,7,9,13,14], but this exponent
has not been explained theoretically. The true nature of the
pinned to plastic flow transition is still not fully understood
despite the ubiquity of the phenomenon.

The pinned to plastic flow transition can be character-
ized as a transition from a nonfluctuating (pinned) state to a
fluctuating (plastic flow) state. The same type of transition
from a nonfluctuating to a fluctuating state was recently
examined by Corte et al. in a system of sheared colloids,
which exhibits a diffusive liquid behavior rather than plas-
tic flow in the fluctuating state [15]. A novel protocol was
used to show that there is a nonequilibrium continuous
phase transition between the fluctuating and nonfluctuating
states. The system was suddenly subjected to a shear and
the amount of time required for the system to organize into
either the fluctuating or nonfluctuating state diverged as a
power law at the transition. Since the system is always
spatially disordered or random, Corte et al. termed the

transition ‘‘random organization.’’ By using the same
type of protocol, here we show that plastic depinning
exhibits exactly the same critical behavior found in the
shearing work, strongly suggesting that the transitions in
the two systems fall into the same universality class.
In Ref. [15], Corte et al. performed a 2D colloidal

shearing simulation and suddenly applied a periodic shear-
ing force to a collection of colloids with short range
interactions. The colloids experience a random force when
they collide. The system always starts in a fluctuating state
where the colloids are diffusing, and organizes into either a
fluctuating or nonfluctuating state after a transient time �.
This transient time diverges as a power law at a well-
defined shearing threshold. The experiments of Ref. [15]
also exhibit a power law divergence of the transient time at
the transition; however, the exponents are smaller than
those found in the simulation which may be due to the
three dimensional (3D) nature of the experiments. From
the exponents and the general behavior of the shearing
system, the transition between the fluctuating and nonfluc-
tuating states is most consistent with an absorbing phase
transition in the universality class of directed percolation
[16]; however, it has been proposed that this particular
system falls into the class of conserved directed percola-
tion (CDP) since the number of colloids is fixed [17].
Here we use a similar protocol to show that the transition

from pinned to plastic flow exhibits the same power law
diverging transient times as the system organizes into
either a nonfluctuating pinned state or a fluctuating plastic
flow state. The exponents of the divergence are close to
those observed in the colloidal shearing system of
Ref. [15]. We also examine quantities that were not mea-
sured in the shearing work and show that there is a power
law decay in the number of active particles at the transition
with an exponent that is in agreement with that predicted
for 2D (CDP). We note that the idea of elastic depinning
transitions falling into a class of absorbing phase transi-
tions was previously proposed for the depinning of elastic
lines which fall into the class of 1D (CDP) [18]; however,
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this is a very different system from plastic depinning since
there is no tearing. Additionally, the exponents for the
elastic system are very different from what we find.

We specifically model a 2D colloidal system with ran-
dom quenched disorder, where it has been well established
in simulations and experiments that a plastic flow phase
occurs for sufficiently strong disorder [13,14]. Since the
colloid-colloid interactions are relatively short ranged, we
can perform much larger simulations for much longer
times near the depinning transition than have previously
been done for 2D plastic flow systems. Previous work for a
periodically driven vortex system showed a transition from
reversible to irreversible flow [19]; however, in Ref. [19]
the particles were moving in both states and there was no
pinned state, placing the system in a distinctly different
regime than that studied here.

We consider a 2D system of size L� L with periodic
boundary conditions in the x and y directions. The sample
contains Nc colloidal particles with density nc ¼ Nc=L

2

and the time evolution of colloid i at position Ri is gov-
erned by the overdamped equation of motion �dRi=dt ¼
Fcc
i þ Fs

i þ Fd [13], where the damping constant � ¼ 1.
The colloid-colloid interaction potential has a Yukawa
form, VðRijÞ ¼ ðE0=RijÞ expð��RijÞ, where Rij ¼ jRi �
Rjj, E0 ¼ Z�2=ð4���0a0Þ, � is the solvent dielectric con-

stant, Z� is the effective charge, 1=� is the screening

length, and the force Fcc
i ¼ �PNc

j�i rVðRijÞ. Lengths are
measured in units of a0, assumed to be of the order of a
micron, forces in units of F0 ¼ E0=a0, and time in units of
�a20=E0. We neglect hydrodynamic interactions since we

are in the low volume fraction, highly charged, electro-
phoretically driven limit and since the pinned colloids
provide the equivalent of a porous medium [20]. The

substrate force Fs ¼ �PNp

k¼1 rVpðRðpÞ
ik Þ arises from Np

randomly placed pinning sites of density np ¼ Np=L
2,

radius rp ¼ 0:2, and maximum force Fp, with VpðRðpÞ
ik Þ ¼

�ðFp=2rpÞðRðpÞ
ik � rpÞ2�ðrp � RðpÞ

ik Þ, where � is the

Heaviside step function and RðpÞ
ik ¼ jRi �RðpÞ

k j is the dis-
tance between particle i and a pin at position RðpÞ

k . The

driving force Fd ¼ Fdx̂ represents the effect of an applied
electric field [14], and here we consider Fd ¼ 0:1. The
initial colloid configuration is prepared by simulated an-
nealing with Fd ¼ 0. Starting from a fully ordered state
does not change the long-time response of the system. We

measure the total velocity V ¼ PNc

i dRi=dt � x̂. We con-
sider two system sizes, L ¼ 24 and 48, with nc ¼ 2:9 and
np ¼ 3:0. For L ¼ 24, Nc ¼ 1672, and Np ¼ 1727, while

for L ¼ 48, Nc ¼ 6688, and Np ¼ 6912, the largest sys-

tem of this type studied to date [21,22]. In the 2D shearing
simulations of Ref. [15], 1000 particles were used to ex-
plore the diverging time scale, so our system should be
sufficiently large to capture the divergence.

In Ref. [13], we showed that a system with quenched
disorder exhibits a regime of plastic flow as a function of
Fp, and that there is a well-defined depinning threshold Fc

as a function of Fd. In this work, we perform a series of
simulations for different values of Fp in which we sud-

denly apply a constant Fd. The system exhibits a transient
motion before settling into a completely pinned state or
steady moving state. Similar results appear for a periodic
driving force with a sufficiently long period. For fixed Fd,
there is a critical pinning strength Fc

p such that for all Fp >

Fc
p the system settles into a pinned (absorbing) state, while

for Fp � Fc
p the system stabilizes in a fluctuating state. For

Fd ¼ 0:1, Fc
p ¼ 0:3470; thus, the transition from a pinned

to a fluctuating state is not simply determined by when the
driving force is higher then the pinning force, but is in-
stead affected by the colloid-colloid interactions. In
Figs. 1(a)–1(d), we show an example of a system with
Fp=F

c
p ¼ 0:93, below the threshold. Shortly after the drive

is applied, Fig. 1(a) indicates that a large portion of the
system is in motion. After 1:5� 104 simulation time steps,
Fig. 1(b) shows that the number of moving colloids de-
creases, while for longer times the number of active col-
loids settles down to fluctuate around an average value, as
shown in Fig. 1(c) at 1� 105 simulation time steps and in
Fig. 1(d) at 1:5� 105 simulation time steps. For Fp=F

c
p >

1:0, the number of active particles decreases to zero over
time and the system reaches the pinned state, as illustrated
in Figs. 1(e)–1(h) for Fp=Fc ¼ 1:05.

In Fig. 2(a) we plot VðtÞ, the time trace of the total
velocity, for a system with L ¼ 48 at Fc

p ¼ 0:35, where

the system settles into a fluctuating state, and Fc
p ¼ 0:3,

where the system reaches a pinned state. To measure the
transient time, we use the same procedure as Ref. [15] and
fit the decaying VðtÞ curves to the function VðtÞ ¼ ðV0 �
VsÞ expð�t=�Þ=t� þ Vs, where V0 is the initial velocity
and Vs is the steady state velocity. This functional form
approaches a power law at the transition when � ! 1, and
the value of � only becomes relevant very close to this
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FIG. 1. Colloid positions (black dots) and trajectories (black
lines) over a fixed time of 5� 103 simulation time steps in a
sample with L ¼ 24. (a)–(d) Fp=F

c
p ¼ 0:93 after (a) 2:5� 103,

(b) 1:5� 104, (c) 1:5� 105, and (d) 1:5� 105 simulation time
steps, showing that the initial motion settles into a steady
fluctuating state. (e)–(h) Fp=F

c
p ¼ 1:05 after (e) 2:5� 103,

(f) 1� 104, (g) 5� 104, and (h) 1� 105 simulation time steps,
showing that the system settles into a pinned state.
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transition. Performing the same fit for different quantities,
such as the fraction of moving particles or the diffusion in
the transverse direction, produces the same results. In
Fig. 2(b) we plot the transient time � versus Fp for the

sample in Fig. 2(a) on both sides of the transition. A clear
divergence in the transient time occurs near Fp ¼ 0:3470.

On both sides of the transition, the � versus Fp curves can

be fit with a power law form,

� ¼ jFp � Fc
pj��; (1)

with � ¼ 1:37� 0:06. Power law fits appear as solid lines

in Fig. 2(b), and in Fig. 2(c) we plot the same data on a log-
log scale. Our system sizes are adequate to obtain expo-
nents of this type [21], and our exponent is in good agree-
ment with the value � ¼ 1:33 found in the 2D shear
simulation [15]. The shearing experiments of Ref. [23]
gave � ¼ 1:1; however, since the experiments were con-
ducted in 3D, the exponents could be expected to differ
from the 2D case. For example, in conserved directed
percolation (CDP), the relaxation time exponent �k �
1:29 in 2D and �k � 1:12 in 3D, while in directed perco-

lation (DP), �k � 1:295 and �k � 1:105, respectively [16].
In Fig. 3 we plot � versus Fp for a sample with L ¼ 24,

where we find the same behavior with � ¼ 1:36� 0:05.
The value of Fc

p shifts slightly down to Fc
p ¼ 0:317. For

even smaller systems with L < 24, the periodic boundary
conditions begin to affect the results since it becomes
possible to stabilize single channels of moving colloids.
In absorbing phase transitions, it is expected that very

close to the transition, the transient states should show a
power law decay with IðtÞ / t�� [16,24]. We consider two

quantities: the fraction of moving colloids, nmðtÞ ¼
N�1

c

PNc

i �ðjRiðtÞ �Riðt� 	Þj � �Þ, with 	 ¼ 1000
and � ¼ 0:0005, and the transverse displacements,

dyðtÞ ¼
PNc

i jðRiðtÞ �Riðt� 	ÞÞ � ŷj. In Fig. 4(a) we

plot the time decay of nmðtÞ at Fp=F
c
p ¼ 0:927, 1.008,

1.05, and 1.2, while in Fig. 4(b) we show the decay of
dyðtÞ for the same pinning strengths. In both cases, curves

close to the transition can be fit to a power law decay
with �¼1=2, as indicated by the solid lines in Figs. 4(a)
and 4(b). A similar power law decay with � ¼ 1=2 has
recently been observed for systems exhibiting absorbing
phase transitions in 2D [24]. Because of the anisotropy
introduced by the driving force, it is possible that our
system could exhibit 1D CDP; this would give � ¼
0:125, and we plot a line with this slope in Fig. 4(b) for
comparison. It would be interesting to examine similar
power law decays in the colloidal shearing simulations
and experiments. We have also measured the order parame-
ter exponent � ¼ 0:6� 0:06. In 2D, DP gives � � 0:451
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FIG. 3 (color online). � versus Fp for the steady fluctuating
state (circles) and the pinned state (squares) in a system with
L ¼ 24. Solid lines: power law fits with � ¼ 1:36� 0:06. Inset:
the same curves on a log-log scale.
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FIG. 4 (color online). The L ¼ 48 system from Fig. 2(b).
(a) nm, the fraction of moving particles, versus time for
Fp=F

c
p ¼ 0:927, 1.008, 1.05, and 1.2 (from top to bottom).

Straight line: a power law fit with � ¼ 1=2. Dashed line: a
power law fit with � ¼ 0:125. (b) dy, the displacements in the y

directions, versus time for Fp=F
c
p ¼ 0:927, 1.008, 1.05, and 1.2

(from top to bottom). Straight line: a power law fit with � ¼
1=2. Dashed line: a power law fit with � ¼ 0:125.
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FIG. 2 (color online). (a) VðtÞ for a system with L ¼ 48. Upper
curve: Fp ¼ 0:3 and Fp=F

c
p ¼ 0:86; lower curve: Fp ¼ 0:35

and Fp=F
c
p ¼ 1:008. In both cases a transient appears which is

much longer near Fp=F
c
p ¼ 1. Smooth lines are guides to the

eye. (b) The transient time � versus Fp to decay to the steady

fluctuating state (circles) or to the pinned state (squares) for the
system in Fig. 2 with L ¼ 48. Solid lines: power law fits to the
form � / jFp � Fc

pj��, where � ¼ 1:37� 0:06. (c) The curves

from (b) on a log-log scale.
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and � � 0:583 while CDP gives � � 0:50 and � � 0:64
[16]; our exponents are not accurate enough to distinguish
between these two models. We are unable to perform a
finite size scaling analysis since systems with Nc > 7000
take a prohibitively long time to simulate while systems
with Nc < 1500 suffer from persistent channels of flow
induced by the periodic boundaries. Finite temperature can
smooth the transition, but it should remain observable at
sufficiently low temperatures [25].

Our results could be directly tested in experiments with
colloidal particles [14]. It is possible to trap colloids opti-
cally [26], so it should also be possible to create a disor-
dered optical trap array in which the strength of the traps
can be controlled by the adjusting the laser strength. In this
way, a constant drive could be applied to the system while
the trap strength is varied. Additionally, it should be
straightforward to conduct similar experiments for vortices
in samples that are in the plastic flow regime. For example,
experiments performed near the peak effect where plastic
flow is expected to occur have revealed a decaying voltage
signal when a driving force is suddenly applied [27]. The
voltage is proportional to the average vortex velocity, in-
dicating that the vortices are undergoing transient motion.
With this type of system, the effectiveness of the pinning
changes sharply with the applied magnetic field near the
peak effect; thus, it should be possible to apply a constant
current and decrease or increase the magnetic field in order
to observe a transition between a regime that decays into a
pinned state to one that decays to a fluctuating state, and
then measure the transient times near the transition.

In summary, we have shown that a 2D plastic depinning
system exhibits behavior that is very similar to that of the
recently studied random organization phenomenon ob-
served in 2D sheared particle systems. Under a sudden
applied drive, there is a well-defined critical transition
where the system organizes into either a nonfluctuating
(absorbing) state or into a fluctuating state. The transient
time diverges as a power law at the transition with expo-
nents that are the same as those found in a system subjected
to shear. Our results provide evidence that plastic depin-
ning falls into the class of absorbing phase transitions
which include directed or conserved directed percolation.
We also propose simple experimental tests for this transi-
tion in colloidal and vortex systems.

This work was carried out under the auspices of the
NNSA of the U.S. DoE at LANL under Contract
No. DE-AC52-06NA25396.
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