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We propose a new mechanism for robust biological patterning. The mechanism bears analogy to

interface dynamics in condensed media. We apply this method to study how gene networks control

segmentation of Drosophila. The proposed model is minimal involving only 4 genes and a morphogen

gradient. We discuss experimental data for which developmental genes are expressed within domains

spatially limited by kinks (interfaces) and the gene interaction scheme contains both weak and strong

repulsion. We show how kink-kink interactions can be calculated from the gene interactions and how the

gene interaction scheme ensures the control of proportions (size regulation).
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In the last decades, a great deal of attention has been
given to problems of pattern formation and control. Some
general patterning principles emerged from theories using
normal forms for dynamical systems [1]. In particular, it
was understood that the interaction of kinks, vortices, and
generally localized modes (LMs) is important in stabilizing
complex equilibrium and nonequilibrium structures such
as block-copolymer phases [2] and flow patterns of shear-
banding fluids [3]. Typically patterning proceeds into two
stages. The first stage is relatively fast growth of LMs,
while the second one can be described as a slow motion of
interacting modes [4]. Our goal is to apply these ideas to
biological systems. There are two traditional approaches to
patterning of biological systems. Diffusion-driven Turing
instabilities control patterns in systems containing at least
two substances with very different mobility [5,6].
Thresholding models are based on the existence of prees-
tablished maternal morphogen gradients [7]. The maternal
morphogen triggers zygotic gene expression in regions of
the embryo where its concentration is larger than a thresh-
old value. Our approach describes a new mechanism for
patterning control. This mechanism is compatible with the
thresholding hypothesis, which can be used to describe
nucleation of the LMs at early patterning stages.
However, the proposed interaction between mobile LMs
represents a new patterning principle in biology.

To illustrate these new concepts, we consider the seg-
mentation of insects such as Drosophila (fruit fly) which is
in focus of many works, biological, mathematical and
physical [8–12]. First, let us outline the segmentation
process. During this process, developmental genes are ex-
pressed in localized domains distributed along the anterior-

posterior (AP) axis of the embryo. The sizes and positions
of the domains evolve in time. In Drosophila, the pattern-
ing is influenced by a maternal protein called bicoid whose
concentration decreases exponentially from anterior to
posterior. Bicoid directs the expression of gap genes.
After rejecting the Turing mechanism, many biologists
think now that segmentation of Drosophila is governed
by a thresholding mechanism. This hypothesis implies
that variation of position of zygotic gene expression do-
main borders should closely follow the variations of the
maternal gradients. This simple explanation is disproved
by recent quantitative studies [9]. Numerous theoretical
works proposed hypothetical mobile determinants [10],
additional maternal gradients [11], or size dependent con-
centrations [13] to explain the paradox.
We propose a new approach to these problems using

LMs and their interaction. In segmentation processes, pro-
teins produced by active genes are expressed in spatially
localized domains. The local modes important for pattern
stabilization are the kinks, representing transition regions
between a domain expressing a gene and a neighboring
domain where the same gene is not expressed. We start
from the gene circuit model (GCM) proposed by one of us
and now largely used to describe patterning by gene net-
works [14]. Recently we have used numerical simulation
and the GCM to show that robust patterning in the embryo
ofDrosophila can be generated by the collective action of a
genetic network [8]. Here we show that the observed
robustness of the model can be explained by LMs inter-
action. We compute the kink-kink interactions for the
GCM and relate them to genetic interactions. These inter-
actions depend on the interkink distances and stabilize a
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pattern that respects proportions. This mechanism also
offers stability with respect to maternal gradient variations
since this gradient serves mainly as an initial condition for
attractor selection, stimulating kink nucleation and growth.

Model.—To describe segmentation, we use a system of
m reaction-diffusion equations, where m is the number of
gene products (proteins). This model is a homogenized
version of the space-discrete GCM [14]
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(1)

uiðx; tÞ are concentrations of proteins; di, �i, Ri are diffu-
sion coefficients, degradation constants, and protein maxi-
mum production rates, respectively;� is a fixed function of
a typical sigmoidal form, smooth and monotonically in-
creasing from 0 to 1; the matrix T describes pair interaction
between induced (zygotic) genes; �ðxÞ is the maternal
morphogen concentration, mi defines the strength of the
interactions between morphogen and induced genes, and
the parameters hi are thresholds.

Solutions of (1) contain domains of relatively constant
expression, encompassed by kink-antikink pairs represent-
ing the domain borders. To simplify calculations we as-
sume that � is a step function. Then, kink positions are
solutions of

P
m
j¼1 Tijujðx; tÞ þmi�ðxÞ þ hi ¼ 0.

Equations for slow motion of kink positions can be
obtained by using the Whitham principle [15].

Slow kink motion, one kink.—Let us first consider a
single gene expressing in the external field MðxÞ. In this
case we consider the one reaction-diffusion equation

ut ¼ duxx þ R�ðTuþMðxÞÞ� �u: (2)

A kink solution of Eq. (2), corresponding to the right
border of the expression domain, localized at q, is given by

UðxÞ ¼ R

�

�
1� 1

2 expð�ðx� qÞÞ; x < q;
1
2 expð� �ðx� qÞÞ; x > q;

(3)

where � ¼ ffiffiffiffiffiffiffiffiffi
�=d

p
is the kink tail parameter. In Drosophila,

whose egg size is about 500 �m, kink tails are about
0:1 �m�1. Antikink solutions, i.e., left borders of expres-
sion domains are obtained by changing x� q to q� x in
(3).

To obtain the slow kink motion note first that Eq. (2) can
be rewritten in a variational form as

�D½ut�
�ut

¼ ��F½u�
�u

; (4)

where D and F are the dissipation and energy functionals

D ¼ 1

2

Z
ut

2dx; F ¼
Z �

1

2
dux

2 þ�ðu; xÞ
�
dx:

The potential � is obtained from �u ¼ �R�ðTuþ
MðxÞÞþ �u.

To find a moving kink solution Uðx; qÞ, depending on
slow variables q ¼ qðtÞ, we substitute the solution (3) into

our functionals and we get the Whitham averaged func-
tionals �D, �F depending on q through U according to �D ¼
D½U�, �F ¼ F½U�. The equation for q time evolution fol-
lows from

d �DðqtÞ
dqt

¼ �d �FðqÞ
dq

: (5)

We obtain the equation of motion of a kink under the
influence of the field M

r
dq

dt
¼ s

�
MðqÞ
RT

þ 1

2�

�
; (6)

where r ¼ �ð2�Þ�2 is a parameter. The equation of motion
also contains the topological charge s. This takes two
values s ¼ 1 for kinks (right borders) and s ¼ �1 for
antikinks (left borders). Given the same field, kinks and
antikinks move in opposite directions.
In order to pass from single kinks to multikink solu-

tions, we apply a local field approximation. From Eqs. (1)
and (2), the total local field acting on a gene i at x is

MiðxÞ ¼
Xm
j�i

TijUjðxÞ þmi�ðxÞ þ hi: (7)

The field Mi gathers the influence of the maternal
morphogen and of other zygotic genes on the gene i. In
(7) UjðxÞ is the asymptotic expression for the field pro-

duced by gene j (typically the field of a kink-antikink pair).
Interacting kinks, alternating cushions.—A pattern is

specified by a sequence of expression domains wherein
gene 1 is expressed in [0, q1], gene 2 is expressed in [q2,
q3], etc. We assume that zygotic genes are all weakly self-
activated TiiRi=�i ¼ TA > 0 and repress each other Tij <

0, i � j. We also consider that there are two types of
interactions: weakly repressive between genes in adjacent
domains such that TijRj=�j ¼ ��1TA < 0 and strongly

repressive between genes in next-adjacent domains
TijRj=�j ¼ ��2TA < 0, 0<�1 <�2. This condition ap-

pears in the Drosophila gap gene system, where it is called
‘‘alternating cushions’’ (AC) [12]. In other insects that
develop in a similar manner, there is limited information
about genetic interactions. Nevertheless, it is known that in
the midge Clogmia four gap genes that are paralogs of hb,
kni, Kr, and gt are expressed in the strongly repressing
pairs (hb, Kr) and (kni, gt) forming nonadjacent domains
separated by ‘‘cushions,’’ Fig. 1. Given that the minimal
GCM satisfying AC contains at least four genes, this fact
indicates that this mechanism may be evolutionarily
conserved.
We obtain the equations of motion for a system of

interacting kinks by replacing in (6) the field (7) produced
by the other domains. The various contributions are ob-
tained from (3). For instance the field acting on the right
border of the domain i has the three contributions
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Mðq2i�1Þ ¼ mi�ðq2i�1Þ þ hi|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
maternal

� �1TAð1� 1
2e

��iþ1�iþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
domain iþ1

� �2TAe
��iþ2�iþ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

domain iþ2

:

A similar equation can be written for the left border of the
domain iþ 1. We get

dq2i�1

dt
¼ vi½�1e

��iþ1�iþ1 � �2e
��iþ2�iþ1 þ �hi�;

dq2i
dt

¼ viþ1½�2e
��i�1�i � �1e

��i�iþ1 � �hiþ1�:
(8)

The distances �iþ1 ¼ q2i�1 � q2i, �iþ1 ¼ q2iþ2 � q2i�1

correspond to the overlap of neighboring domains and to
the distance between next neighbor domains, respectively.
The mobility vi ¼ 4

ffiffiffiffiffiffiffiffiffi
�idi

p
depends only on the gene in

domain i. The terms �hi regroup nonexponential contribu-
tions to the field.

Various terms in the Eqs. (8) can be interpreted as forces
acting on kinks. These forces are of two kinds. Terms �hi
depend only weakly on the kink positions and can be
interpreted by analogy as ‘‘pressure.’’ Positive and negative
pressures expand and shrink the domains, respectively. The
second category are forces depending exponentially on the
distances between kinks. These exponential terms, ensur-
ing the main contribution to stability, will be called by
analogy, ‘‘springs.’’ AC architecture introduces two types
of springs: between borders of next-adjacent domains that
tend to prevent overlap, and between borders of adjacent
domains that tend to increase overlap. Without springs,
pattern dismantles. Domains with negative pressure shrink

and disappear. Domains with positive pressure expand and
occupy all available space.
An important property of developmental systems is size

regulation (SR). For a patterning system this means that the
pattern adapts proportionally when the size of the embryo
is changed. Turing systems cannot reproduce SR without
artificial assumptions [13]. An alternative explanation of
SR [6], based on lateral induction and self-inhibition of the
patterning substances, uses very mobile components.
While such hypotheses may be sufficient in some cases,
our model shows that they are not necessary in general. Our
mechanism explains SR in a simplest way. When size
varies, the kinks readjust their mutual distances by
‘‘spring’’ repulsion. Thus, if size increases then interkink
distances increase as well. For periodic patterns with only
one interkink distance, this mechanism ensures perfect SR.
The cases with several interkink distances should be ana-
lyzed more carefully. For instance, the size increase can
lead to uneven increases of domain widths and of domain
overlaps. SR of patterns with two interkink distances is
studied analytically. Then, we simulate numerically the
dynamics of interacting kinks using interkink distances
observed in Drosophila.
Uniform pressure terms, two interkink distances.—Size

regulation is easy to study in the case of uniform pressure
terms �hi ¼ �h. In this case stationary patterns are periodic
with two interkink distances �i ¼ �, �i ¼ �, where �þ
� ¼ L=N, N is the number of domains. Let � ¼ �=ð�þ
�Þ be the interkink distances ratio. Size regulation means
that � is not sensitive to variations of L, i.e., S� ¼
jd log�=d logLj< �, where � is a small number. If � ¼
0:1, then a relative variation of 10% of L leads to less than
1% variation of the ratio �. Simple calculations show that �
can be very small. From the stationary equations of Eq. (8)
we obtain an implicit dependence of � on ~L and by
differentiation an expression for S�,

�� expð� ~Lð1� �ÞÞþ ~h ¼ expð� ~L�Þ; (9)

S� ¼
��������1� ð1� �Þ=� expð ~Lð2�� 1ÞÞ

1þ �� expð ~Lð2�� 1ÞÞ
��������; (10)

with ~L¼�ð�þ�Þ¼�L=N, ~h¼ �h=�2, 0<��¼�1=�2<
1. ~L, � values can be obtained from experimental patterns.

��, ~h are model parameters. Most importantly, sensitivity
(10) contains only one model parameter, ��. Now, SR is
easy to test. First we calculate the robustness domain (RD),
defined as the set of ( ~L, �) for which jS�j< �. For given

��, SR is obtained when ( ~L, �) are inside RD (in blue in
Fig. 2). For small �� there are two disconnected RDs: one
controlling bands with large overlaps (� small) and one
controlling bands with narrow overlaps, or narrow inter-
band spacings (� ¼ 1� r, r � 0 is small). These two
domains are connected for larger ��. Experimental ( ~L,
�) were computed using quantitative gene expression
data [16] for eight gap gene kinks and eight time points
during cell cycles 13 and 14. Kink positions, calculated as
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FIG. 1 (color online). (a) Minimal alternating cushions involve
4 genes. Weak and strong interactions are shown with dotted and
continuous lines, respectively. (b) Experimental pattern in
Drosophila: (hb, kni) and (Kr, gt) are pairs of strongly repulsive
genes, repression is weak between genes belonging to distinct
pairs.
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half maximum intensity positions, give direct access to �.
For ~L we need the value of �. For each time point, � was
calculated as an average over the eight kinks. In Fig. 2
experimental values lie in the upper RD. This proves the
size regulation by gene-gene interaction in Drosophila.
( ~L, �) should also lie on the nullcline curves solutions of
Eq. (9). Positions of experimental points with respect to the

nullcline family in Fig. 2 suggest that pressure ~h is negative
for all kinks.

Nonuniform pressure terms, advantages of the alternat-
ing cushions.—The experimental data correspond to
slightly dispersed interkink distances which means that

pressure terms are not uniform. We investigated this situa-
tion numerically. We compared the cases with and without
next nearest gene interaction. Stability was tested by ran-
dom perturbations of the initial data. Starting with t ¼
43 min during cell cycle 14, the point where gap gene
kinks are fully formed, the kink dynamical equations were
integrated up to t ¼ 68 min , the onset of gastrulation.
Additive noise uniformly distributed in the interval �5%
has been added to initial data. Size variations were simu-
lated by multiplying � by random factors uniformly dis-
tributed within 100� 5%. For AC scheme the pattern is a
stable attractor and can be reproduced identically in all
samples (see Fig. 3 top left). The model parameters were
chosen such that experimental and modeled kinks coincide
at steady state of an average size embryo. Fitting the same
positions without a next nearest genes interaction leads to
unstable pattern: small perturbations in initial data are not
corrected (Fig. 3 upper right). The lack of stability of this
scheme can be understood analytically. Indeed, if �2 ¼ 0
then the steady states of Eqs. (8) are degenerate: �i are
fixed but �i are free to change (only their sum is fixed).
Conclusion.—We have presented an analytic study of

the architecture of embryonic gap gene domains that in-
dicates that the alternating cushions architecture has much
better size-regulation properties, buffering against mater-
nal gradient variations, and local stability of pattern than an
arrangement of locally repulsive domains. Our calcula-
tions, while based on detailed experimental data for
Drosophila melanogaster, apply to long germ band insects
in general. The findings reported here are an evolutionary
prediction that the AC architecture will be universal in this
developmental mode.
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FIG. 2 (color). Size regulation. �, ~L parameters should lie
within the blue domains for size sensitivities <0:2.
Experimental (�, ~L) (in cyan) for eight kinks in D. melanogaster
embryos are represented for eight time classes in cycles 13 and
14. Nullclines (see text) are drawn in red for several negative ~h.

FIG. 3 (color). Pattern robustness in D. melanogaster with
respect to variations in initial data (up), to variations in initial
data and in size (down). Left: alternating cushions; Right: local
repulsion scheme, in which nonadjacent genes do not interact.
Expression domains were calculated for 100 random samples. �
is rms of the most variable position.
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