
Liquid Crystal Cells with ‘‘Dirty’’ Substrates

Leo Radzihovsky and Quan Zhang

Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
(Received 13 May 2009; published 12 October 2009)

We explore liquid crystal order in a cell with a ‘‘dirty’’ substrate imposing a random surface pinning.

Modeling such systems by a random-field xy model with surface heterogeneity, we find that orientational

order in the three-dimensional system is marginally unstable to such surface pinning. We compute the

Larkin length scale, and the corresponding surface and bulk distortions. On longer scales we calculate

correlation functions using the functional renormalization group and matching methods, finding a

universal logarithmic and double-logarithmic roughness in two and three dimensions, respectively. For

a finite thickness cell, we explore the interplay of homogeneous-heterogeneous substrate pair and detail

crossovers as a function of disorder strength and cell thickness.
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Recently there has been considerable progress in under-
standing the phenomenology of ordered states subject to
random heterogeneities present in real materials [1]. While
the focus has been on bulk heterogeneity, there are realiza-
tions in which random pinning is confined to a surface of
the sample. A technologically relevant example (inset of
Fig. 1) is that of a liquid-crystal cell (e.g., of a laptop
display), where a ‘‘dirty’’ substrate imposes random pin-
ning, that competes with liquid-crystal ordering. Mani-
festations of heterogeneous surface anchoring include
common schlieren textures and multistability effects [2]
observed in nematic cells, as well as layer distortions in
smectic cells [3].

In this Letter we study such surface randomly pinned
systems modeling them via a d-dimensional xymodel with
the heterogeneity confined to a (d� 1)-dimensional sur-
face. One might a priori expect surface pinning effects to
be vanishingly weak compared to the ordering tendency of
the homogeneous bulk, and thus the xy order to be stable to
weak surface disorder in any dimension.

Our finding contrasts sharply with this intuition.
Namely, our key qualitative observation is that the
xy order on the surface of such d-dimensional system
with d � dlc ¼ 3 is always destabilized by arbitrary
weak random surface pinning [4].

Our finding can be understood from a generalization of
the bulk Imry-Ma argument [5,6] to the surface pinning
problem. For an ordered region of size L, the surface

random field can lower the energy by Epin � Vp

ffiffiffiffiffiffiffi
Np

p �
�1=2

f Lðd�1Þ=2, where Vp is a typical pinning strength with

zero mean and variance �f � V2
p=�

d�1
0 (�0 is the pinning

correlation length) andNp is the number of surface pinning

sites. Since surface distortions on scale L extend a distance
L into the bulk, the corresponding elastic energy cost
scales as Ee � KLd�2, where K is the elastic stiffness.

For d < 3 and L> �L � ðK2=�fÞð1=ð3�dÞÞ the surface het-

erogeneity dominates over the elastic energy, and thus on
these long scales always destroys long-range xy order for

arbitrarily weak surface pinning [4]. A more detailed 3D
analysis gives

�L � aecK
2=�f ; for d ¼ 3; (1)

where c ¼ 8�3, and a is a microscopic cutoff, set by
liquid-crystal molecular size of a few nanometers.
Although these (heterogeneous) substrate-induced dis-

tortions from short scales x < �L only penetrate a distance
�L into the bulk, decaying exponentially beyond this scale,
the bulk ordered state never recovers. That is, strikingly, we
find that logarithmically rough distortions, persist an arbi-
trary long distance z from the dirty substrate, as summa-

rized by Cðx; z; z0Þ ¼ hð�ðx; zÞ ��ð0; z0ÞÞ2i, with (for
x � �L in 2D)

Cð1Þ
2D ðx; z; zÞ � b2e

�2z=�L þ �2

9
ln

�
1þ x2

ð2zþ �LÞ2
�
; (2)

(b2 is a weak function of 2z=�L), and in 3D given by a
double-logarithmic asymptotics (12).

FIG. 1 (color online). Orientational order parameter c ðw; 0Þ
(controlling light transmission through a liquid-crystal cell) at
the random pinning substrate of a 3D Dirichlet cell of thickness
w, illustrated in the inset.
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With an eye to liquid-crystal cell applications [2,3], we
extend our analysis to a nematic cell of finite thickness w,
with a heterogeneous front substrate, and a back substrate
with a homogeneous Dirichlet (D) or Neumann (N )
boundary condition, that can be imposed by substrate
treatments, for example, surface polymer coating and rub-
bing. For the D-cell long-range orientational order is
stable to weak pinning, but with a value of surface orien-

tational order parameter c that exhibits a strong crossover
as a function of w=�L as shown in Fig. (1), that in 3D is
given by

c �
( ðawÞ�L; thin cell; a � w � �L;

e��½lnð�L=aÞ
lnðw=aÞ ��3D ; thick cell; w � �L;

(3)

where �3D ¼ �2=18 is a universal exponent and � ¼ 2�2,
�L ¼ 2�2= lnð�L=aÞ are nonuniversal constants. In con-
trast, the long-range orientational order is unstable for the
N cell, with the ratio w=�L determining the rate of decay
with the transverse cell size, L.

We now outline the analysis that leads to above re-
sults. As a ‘‘toy’’ model of a nematic liquid-crystal cell
[7] with a dirty substrate and thickness w, we employ a
d-dimensional surface random-field xy model

H ¼
Z 1

�1
dd�1x

Z w

0
dz

�
K

2
ðr�ðrÞÞ2 � V½�ðrÞ;x��ðzÞ

�
:

(4)

In the equation above �ðrÞ is the xy-field distortion (azi-
muthal nematic director angle in the plane of the substrate)
at a point r � ðx; zÞ, the random surface pinning potential
V½�ðx; zÞ;x��ðzÞ, characterized by a Gaussian distribution
with a variance Vð�;xÞVð�0;x0Þ ¼ Rð���0Þ�d�1ðx�
x0Þ, is confined to a front substrate at z ¼ 0, and at
the back homogeneous substrate at z ¼ w we impose
either a Dirichlet [�ðx; zÞjz¼w ¼ 0] or a Neumann
[@z�ðx; zÞjz¼w ¼ 0] boundary condition for the D and
N cells, respectively. The long-scale behavior of the
periodic (period 2�) variance function Rð�Þ characterizes
low-temperature properties of the system.

Because the random pinning potential in (4) is confined
to the front substrate at z ¼ 0, no nonlinearities appear in
the bulk (0< z < w) of the cell. Consequently, it is con-
venient to exactly eliminate the bulk harmonic degrees of
freedom �ðx; zÞ in favor of the random substrate field
�0ðxÞ � �ðx; z ¼ 0Þ [8]. This can be done via a con-
strained path integral by integrating out �ðx; zÞ with a
constraint �ðx; z ¼ 0Þ ¼ �0ðxÞ, thereby obtaining an ef-
fective (d� 1)-dimensional Hamiltonian for �0ðxÞ [8].
Equivalently (for T ¼ 0 properties), we can eliminate
�ðx; zÞ by solving the bulk Euler-Lagrange equation
r2�ðrÞ ¼ 0. To this end, we solve @2z�ðq; zÞ �
q2�ðq; zÞ ¼ 0, for �ðq; zÞ ¼ R

dd�1x�ðx; zÞe�iq	x. The

solutions for boundary conditions of interest are summa-

rized by �ðaÞðq; zÞ ¼ �0ðqÞ’ðaÞðq; zÞ, with mode functions

’ðaÞðq; zÞ given by e�qz (a ¼ 1), sinh½qðw� zÞ�=
sinhðqwÞ (a ¼ D), cosh½qðw� zÞ�= coshðqwÞ (a ¼ N ).
Substituting these into (4) we obtain a (d� 1)-

dimensional Hamiltonian Hs ¼
R dd�1q

ð2�Þd�1
1
2 �

ðaÞ
q j�0ðqÞj2 �R

dd�1xV½�0ðxÞ;x�, confined to the random substrate at

z ¼ 0, with elastic kernels given by

�ð1Þ
q ¼ Kq; w ! 1; (5)

�ðDÞ
q ¼ Kq cothðqwÞ; Dirichlet; (6)

�ðN Þ
q ¼ Kq tanhðqwÞ; Neumann: (7)

The finite thickness �ðDÞ
q and �ðN Þ

q reduce to Kq for w !
1, as required. The q nonanalyticity and long wavelength
stiffening (compared to the bulk Kq2 elasticity) of the
latter arises due to a mediation of surface distortions by
long-range deformations in the bulk of the cell. In the
opposite limit of a thin cell and long scales, the Dirichlet
kernel reduces to a ‘‘massive’’ one,K=w, and the Neumann
kernel simplifies toKwq2 of an ordinary surface (without a
contact with the bulk) xy model.
For convenience we use the replica ‘‘trick’’ [9] to

work with a translationally invariant theory, at the ex-
pense of introducing n replica fields (with the n ! 0 limit
taken at the end). The disorder-averaged free energy is

given by F ¼ �TlnZ ¼ �Tlimn!0ðZn � 1Þ=n, with Zn ¼R½d��
0 �e�HðrÞ

s ½��
0
�=T , where the effective translation invari-

ant replicated Hamiltonian HðrÞ
s ½��

0 � is given by

HðrÞ
s ¼ Xn

�

Z dd�1q

ð2�Þd�1

1

2
�ðaÞ
q j��

0 ðqÞj2

� 1

2T

Xn
�;�

Z
dd�1xR½��

0 ðxÞ ���
0 ðxÞ�: (8)

The advantage of this dimensional reduction is that the
problem becomes quite similar to that of the bulk random
pinning [10–12] in one lower dimension and with a modi-

fied elasticity encoded in �ðaÞ
q , (5)–(7).

The importance of surface pinning can be assessed by

computing distortions h�2i within the Larkin random
torque approximation [5] �ðxÞ ¼ @�0

V½�0ðxÞ;x�j�0¼0 to

the random potential Vð�0;xÞ, with inherited Gaussian

statistics and variance �ðxÞ�ðx0Þ ¼ �R00ð0Þ�d�1ðx�
x0Þ � �f�

d�1ðx� x0Þ.
Simple analysis gives h�2

0ðxÞiðaÞ �
R
q

�f

½�ðaÞ
q �2 , diverging

with surface extent L for an infinitely thick cell,w ! 1 for

d � dlc ¼ 3, and for an N cell of thickness w for d �
dðN Þ
lc ¼ 5. The latter is consistent with the dbulklc ¼ 4 [5,6]

for a (d� 1)-dimensional random-field xymodel, to which
a thin N cell reduces. In contrast, for a D cell these
orientational root-mean-squared (rms) fluctuations are fi-
nite, but grow with cell thickness w.
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We identify the substrate extent L
 at which these rms
fluctuations grow to order 2� with the Larkin length scale

�ðaÞ
L [5]. For an infinite cell thickness we find �L given by

Eq. (1). For a finite thickness D cell we find

�ðDÞ
L �

(
�L; �L � w;
cdw

	dþ1

ð�c
L��LÞ	d ; �L � �c

L;
(9)

with �c
L ¼ adw the ‘‘critical’’ Larkin length, c2 ¼ 1, a2 �

1:71, 	2 ¼ 1, and c3 � 0:79, a3 � 1:23, 	3 ¼ 1=2. Thus
for a cell thicker than the Larkin length, �L, the back D
substrate has weak influence on the range of the xy order,
dominated by the random front substrate. However, for a
thin cell, such that �L spans the cell thickness, the D
substrate effectively enforces the xy-order alignment
across cell, suppressing�rms

0 below 2� and thereby driving

the cell Larkin scale, �ðDÞ
L to diverge.

However, this divergence is not an indication of a sharp
transition. Rather, it is a signal of a crossover from a
weakly xy-ordered state (at strong disorder and thick
cell) for �L � w to a strongly xy-ordered state (at weak
disorder and thin cell) for �L � w. In both limits the
aligning D substrate dominates over the random one,
leading to a long-range xy order. For theN cell we instead
find

�ðN Þ
L �

8><
>:
�L; w� �L;

w
d

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð�L=wÞ

p
; d¼ 3;

ð�LÞðð3�dÞ=ð5�dÞÞ; d< 3;
w� �L;

(10)

with 
d ¼ 2=ð5� dÞ, lower limit corresponding to a
thin (d� 1)-dimensional ‘‘film’’ pinned by (d� 1)-
dimensional ‘‘bulk’’ disorder.

On length scales longer than the crossover scale �ðaÞ
L , �0

distortions grow into a nonlinear regime, where random
torque model is inadequate, and the effects of the random
potential V½�0ðxÞ;x� must be treated nonperturbatively.
This can be done systematically using a functional renor-
malization group (FRG) analysis [11,12] in an expansion
in � ¼ dlc � d ¼ 3� d.

To this end we employ the standard momentum-shell
FRG [11–13], integrating out perturbatively (to one-loop)

in R½��
0 ðxÞ ���

0 ðxÞ� the short-scale modes with support

in an infinitesimal momentum shell �=b < q <� � 1=a,
with b ¼ e�‘. Taking wðbÞ ¼ b�1w, for T ¼ 0 we obtain

@‘R̂að�Þ ¼ �ðaÞð‘ÞR̂að�Þ þ 1
2ðR̂00

að�ÞÞ2 � R̂00
að�ÞR̂00

að0Þ;
(11)

with effective eigenvalues given by �ðD;N Þð‘Þ ¼
�� 4�wð‘Þ

sinh½2�wð‘Þ� and dimensionless disorder variance func-

tions defined by R̂D;N ð�Þ � Cd�1�
d�3

K2coth�2ð�wÞRð�Þ for the D
and N choices of boundary conditions on the back sub-
strate. In Eq. (11), the prime indicates a partial derivative

with respect to �, and Cd ¼ 1=½�ðd=2Þ2d�1�d=2�.

For w ! 1, aside from the Gaussian eigenvalue of

� ¼ 3� d (rather than 4� d), the flow of R̂ for our
surface pinning problem reduces to that of the bulk pin-
ning problem [4,11,12,14]. In 3D the disorder is mar-

ginally irrelevant, vanishing according to R̂00ð�; ‘Þ ¼
1
‘ ½� 1

6 ð�� �Þ2 þ �2

18�, and flows to a fixed point R̂00
 ð�Þ ¼
�½� 1

6 ð�� �Þ2 þ �2

18� for d < 3 [4,14]. In 2D T is no

longer irrelevant leading to a qualitatively distinct behavior
dominated by a single harmonic of the random potential,
which in turn leads to a finite T super-roughening transition
[13,15]. In the opposite extreme of a microscopically thin

cell, such that w � a, the eigenvalues reduce to �ðDÞð‘Þ �
1� d and �ðN Þð‘Þ � 5� d. These correspond to flows of
a (d� 1)-dimensional bulk random-field xy model, with
the D cell effectively subjected to a uniform external field
due to the back substrate, dominating over the random
pinning in the physical dimensions (d ¼ 2, 3).
For a more realistic case of a finite cell thickness w,

there is a crossover at scale b
w � w=a from a thick d
dimensional cell at small ‘ such that �wð‘Þ � 1 to an
effective (d� 1)-dimensional ‘‘film’’ for �wð‘Þ � 1.
Another crossover scale encoded in flow equations,
Eq. (11), is set by a scale b
L at which the nonlinear terms
become comparable to the linear ones, where the flow
leaves the vicinity of the Gaussian fixed point. This latter
scale is simply set by the Larkin length, with b
L ¼ �L=a.
As we will see blow, the nature of distortions strongly
depends on the relative size of these two crossover scales
and on the type of boundary condition on the uniform
substrate. We naturally designate the two cases, w � �L

and w � �L, as thin and thick cells, respectively.
We can now utilize these FRG flows to compute the

orientational correlation function CðaÞ by establishing a

relation for it at different scales: CðaÞ½q; K; w; R̂a� ¼
eðd�1Þ‘CðaÞ½qe‘; Kð‘Þ; wð‘Þ; R̂að‘Þ�, where the prefactor
comes from the dimensional rescalings, keeping T fixed.
Choosing ‘
 such that qe‘
 ¼ �, allows us to reexpress ‘

inside CðaÞ in terms of q. This gives CðaÞ½q; K; w; R̂a� �
�ð�qÞd�1 R00ð0;‘
Þ

½�ðaÞ
�
ð‘
Þ�2

, which explicitly requires an analysis of

the flow for specific boundary conditions.
For an infinitely thick cell (w ! 1) and q < 1=�L this

gives in d < 3: Cð1Þ

 ½q; K;1; R̂� � 1

qd�1
ð3�dÞ�2

9Cd�1
, and in 3D:

Cð1Þ

 ½q; K;1; R̂� � �1

q2 lnðqaÞ
�2

9C2
, from which real space cor-

relations on in-plane scales x > �L (inaccessible within
Larkin approximation) can be computed. Fourier-

transforming Cð1ÞðqÞ we find Cð1Þðx; z; zÞ � Cð1Þ
L ðx; zÞ þ

Cð1Þ

 ðx; zÞ, where Cð1Þ

L ðx; zÞ is the contribution from short
scales, ��1

L < q < a�1, where random torque model is

valid, given by Cð1Þ
L ðx; z; zÞ ¼ ð3� dÞ8�2ð2z�L

Þ3�d�ðd�
3; 2z=�L; 2z=aÞ � bde

�2z=�L with �ðp; z1; z2Þ ¼R
z2
z1
tp�1e�tdt the generalized incomplete Gamma func-

tion. The second long-scale part, Cð1Þ

 ðx; zÞ is a universal

contribution, a Fourier transform of Cð1Þ

 ½q; K;1; R̂�,
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which when combined with Cð1Þ
L at low T, in 2D gives

Eq. (2). In 3D this matching procedure gives [4]

Cð1Þ
3D ðx; z; zÞ � 2�2

9

8>>><
>>>:
ln½ lnðx=aÞlnð�L=aÞ�; 2z � �L � x;

ln½ lnðx=aÞlnð2z=aÞ�; �L � 2z � x;
x2

16z2
1

lnð2z=aÞ ; �L � x � 2z:

(12)

Another quantity of interest is the average orientational

order parameter, c ðzÞ ¼ hei�i � e�h�2i=2, where some-
what crudely we approximated it by assuming Gaussian-
correlated �ðrÞ.

FromCðaÞðqÞ forw ! 1 and for arbitrarily thickN cell

we find that �2
rmsðL; zÞ ¼ h�2i grows without bound with

planar cell extent L. Thus for a ¼ 1 and a ¼ N cells in

d � 3 the orientational order parameters, c ð1;N Þ vanish in
the thermodynamic limit for arbitrarily weak surface
heterogeneity.

In contrast, in a D cell the growth of �2
rmsðL; zÞ is

suppressed by the aligning homogeneous D substrate.
Thus the order is stable for an arbitrarily thick cell, char-

acterized by c ðw; zÞ that is a strong function of w=�L,
computable via above matching analysis. For a thin cell
(w � �L), wð‘Þ ¼ e�‘w reaches the microscopic scale a

at e‘


w ¼ w=a and therefore �ðDÞð‘ > ‘
wÞ � �� 2 ¼ 1�

d before e‘


L ¼ �L=a. Since beyond ‘
w, �ðDÞð‘ > ‘
wÞ< 0,

pinning is irrelevant with its growth cutoff at scale e‘


w . In

this case, scales beyond �L are not probed (the flow never
leaves the vicinity of the Gaussian fixed point) and
�rmsðw; zÞ can be accurately computed within the random
torque model, cut off by w. Thus, utilizing our earlier
definition of �L, for a thin D cell in d < 3, we find
�2

rmsðw; 0Þ � 4�2ðw�L
Þ3�d.

For a thick D cell (w � �L), the flow instead crosses
over to the vicinity of the nontrivial fixed point R
ð�Þ
(leaves the Gaussian fixed point) before it is cut off by
the finite w. Thus on these intermediate scales (defined by

w=a � e‘


w > e‘ > e‘



L � �L=a) despite being ultimately

cut off by w, �0 distortions are large, requiring a non-
perturbative treatment of surface pinning. As for above

computation of Cð1ÞðxÞ, in this regime c ðw; 0Þ ¼
e��2

rmsðw;0Þ=2 can be well estimated by the matching FRG
analysis.

Thus, neglecting the subdominant contribution from
scales longer than w, approximating the �0 correlator
CðqÞ by its fixed-point value, valid for w � �L [such
that the flow approaches the vicinity of the nontrivial fixed
point, R
ð�; ‘Þ], and approximating CðqÞ by its Gaussian
fixed-point expression, valid for ��1

L < q < a�1, for a

thick cell w � �L and d < 3, we find h�2
0i � ��2

9 

lnðw=�LÞ þ 4�2. Putting these crossovers together for d <
3 we find

c ðw; 0Þ �
�
e�2�2ðw=�LÞ3�d

; thin cell; w � �L;
e�2�2ð�L

w Þ�


d ; thick cell; w � �L:

(13)

In 3D such matching analysis gives�2
0 � 4�2 lnðw=aÞ

lnð�L=aÞ for
a thin cell (w � �L), and �2

0 � �2

9 ln½ lnðw=aÞlnð�L=aÞ� þ 4�2 for a

thick cell (w � �L), leading to c ðw; 0Þ in (3).
To conclude, above we have studied stability of an

ordered xymodel to random surface pinning and discussed
these results in the context of a nematic liquid-crystal cell
with a ‘‘dirty’’ nonrubbed substrate. We found that for a
thick 3D cell, at long scales, the nematic order is margin-
ally unstable to such surface pinning, and computed the
extent of the orientational order in cells of finite thickness
with a second homogeneous substrate. We expect these
predictions to be testable via polarizer-analyzer transmis-
sion and confocal microscopies, and through birefringence
response to an in-plane electric or magnetic field.
We leave the challenging question of topological defects

proliferation, generalizations to other interesting (e.g.,
smectic [3]) states, and glassy nonequilibrium relaxation
(memory effects, aging, etc., all expected in our system) to
future studies.
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Note added.—While our Letter was under review, we
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