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The nonlinear electronic transport properties of a ballistic Aharonov-Bohm ring are investigated. It is

demonstrated how the electronic interaction breaks the phase rigidity in a two-probe mesoscopic device as

the voltage bias is increased. The possibility of studying interference effects in the nonlinear regime is

addressed. The occurrence of magnetic field symmetries in higher order conductance coefficients is

analyzed. The results are compared with recent experimental data.
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Introduction.—The Onsager-Casimir [1] reciprocity re-
lations are ubiquitous in systems driven out-of-equilibrium
in the linear response regime. In classical systems, the
quest for related symmetries in the nonlinear regime is a
subject of increasing interest with potential applications in
numerous problems [2]. In mesoscopic physics, the
Onsager symmetries enforce, for instance, the linear con-
ductance in two-terminal devices to be an even function
with respect to magnetic field inversion [3]. Often de-
scribed as phase rigidity, this prevents the use of such
devices for quantum interferometry [4]. Recently, experi-
mental groups have studied how the Onsager-Casimir re-
lations are broken in nonlinear transport as the source-
drain bias is increased in a variety of open systems, such
as quantum dots [5–7], carbon nanotubes [8], and quantum
rings [9,10]. A large bias induces a rearrangement of
charges, which are subjected to the Coulomb interaction.
Far from equilibrium, interactions break the Onsager-
Casimir symmetries [11–13]. Theoretical effort has been
devoted to infer the effective electron-electron interaction
parameters from the statistical analysis of nonlinear trans-
port experiments [12].

A recent study of nonlinear transport in a two-terminal
ballistic Aharonov-Bohm (AB) ring as a function of an
applied perpendicular magnetic field B and a bias V [9]
unveiled nonstatistical puzzling symmetries. By expanding
the current IðBÞ in powers of V,

I � Gð1ÞV þGð2ÞV2 þGð3ÞV3 þ � � � ; (1)

nonlinear conductance coefficients of different orders were
analyzed. It was observed that the even conductance co-

efficients Gð2nÞ are neither even nor odd with respect to the
magnetic field. In contrast, surprisingly, the odd ones,

Gð2nþ1Þ, are even functions of B raising the question
whether this observation is an indication of a new funda-
mental nonequilibrium symmetry. Ref. [9] also shows that
phase rigidity is lifted in the nonlinear regime. The accu-
mulation of an extra phase in one of the quantum ring’s
arms is mimicked by using lateral gates that locally modify
the electronic density. The phase shift of the AB oscilla-

tions in Gð2Þ as a function of lateral gates voltages shows a
smooth variation with a slope proportional to the arm
length, which is a promising result towards using AB rings
as two-terminal interferometers.
In this Letter we introduce a simple model that allows

for a semianalytic description of the nonlinear transport in
a ballistic AB ring. We analyze the nonlinear conductance
oscillation phase shifts and the symmetries of the nonlinear
conductance coefficients, both issues experimentally ad-

dressed in Ref. [9]. We discuss the phase rigidity in theGð2Þ
conductance coefficient and present an explanation for the

observed even parity in the Gð3Þ and Gð5Þ conductance
coefficients.
The method.—Let us consider the electronic transport in

a two-probe mesoscopic ring connected to reservoirs, � ¼
1, 2, both at a temperature T. A voltage bias applied to the
reservoirs drives the system out of equilibrium and causes a
current flow. In the absence of inelastic processes, the
electron current on the lead � reads [11,14]

I� ¼ 2e

h

X2
�¼1

Z 1

�1
dEf�ðEÞA��ðE; fUðrÞgÞ; (2)

where f�ðEÞ ¼ fðE��0 � eV�Þ ¼ ½eðE��0�eV�Þ=kBT þ
1��1, kB is the Boltzmann constant, and V� is the voltage

applied to the reservoir connected to the lead � (measured
with respect to the equilibrium chemical potential �0).
Because of current conservation, I ¼ I1 ¼ �I2.
The transmission coefficient A�� is given by [11]

A��ðE; fUðrÞgÞ � Tr½1���� � Sy
��S���; (3)

where S�� denotes the scattering matrix with lines

(rows) associated with the channels a (b) at the contact
� (�), 1� is the identity matrix, and the trace runs over
all open channels in � and �. The scattering matrix
S��ðE; fUðrÞgÞ is a function of the electron energy and a

functional of the electrostatic potential UðrÞ that is estab-
lished in the conductor due to the voltages fV�g.
It is convenient to expand �UðrÞ � UðrÞ �UeqðrÞ as a

power series of the applied voltages, namely,
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�UðrÞ ¼ X
�

u�ðrÞV� þ 1

2

X
�;�

u��ðrÞV�V� þ � � � ; (4)

with the characteristic potentials u�����ðrÞ defined as

u�����ðrÞ ¼
�

@

@V�

@

@V�

� � �
�
UðrÞ

��������fV�g¼0
: (5)

In line with Ref. [9], we take V1 ¼ V=2 and V2 ¼ �V=2.

The linear conductance, Gð1Þ � @I=@VjV¼0, is given by

the Landauer formula, namely, Gð1Þ ¼ ð2e2=hÞ�R
dEð�@Ef0ÞðA11 � A12ÞðE; fUeqðrÞgÞ=2, where f0ðEÞ ¼

fðE��0Þ and Ueq is the equilibrium electrostatic poten-

tial for V ¼ 0.

Simple symmetry arguments show that Gð1ÞðBÞ ¼
Gð1Þð�BÞ. In contrast, there is no general principle that
predicts reciprocity relations for the nonlinear conductance
coefficients. The inspection of higher powers of V in

Eq. (1) gives any GðnÞ in terms of the characteristic po-
tentials and functional derivatives of the transmission
coefficients with respect to UðrÞ. While quantities like
�A��=�UðrÞjV¼0 are expressed in terms of

S��ðE; fUeqðrÞgÞ, the u�����’s encode the information about

electronic many-body interactions [14,15].

The conductance coefficient Gð2Þ is written as Gð2Þ ¼
e3=2h

R1
�1 dEð�@Ef0ÞTð2Þ with [11]

Tð2Þ ¼
Z

dr½u1ðrÞ � u2ðrÞ��ðA11 � A12Þ
e�UðrÞ

��������V¼0
: (6)

At the simplest approximation level, u�ðrÞ is obtained from
a Hartree equation, whose source terms are the injected
electron density and the corresponding induced charge in
the conductor, the latter related to the Lindhard function
[14]. Using the Thomas-Fermi approximation for the po-
larization, one writes [11,15]

� �u�ðrÞ þ 4�e2u�ðrÞ
X
�

dnem� ðrÞ
dE

¼ 4�e2
dnin� ðrÞ
dE

; (7)

where the injectivity is given by

dnin� ðrÞ
dE

¼
Z 1

�1
dE

4�i

�
@f0
@E

�X
�

Tr

�
Sy
��

�S��

e�UðrÞ�H:c:

�
(8)

and the emissivity, dnem� ðrÞ=dE, is obtained by exchang-
ing � and � in S at Eq. (8) [14]. Injectivity and emissivi-
ties are related by symmetry: S��ðBÞ ¼ ½S��ð�BÞ�T read-

ily gives that dnin� ðBÞ=dE ¼ dnem� ð�BÞ=dE, often called
microreversibility relation [14]. Gauge invariance re-
quires that

P
�u�ðrÞ ¼ 1, leading to

P
�dn

in
� ðrÞ=dE ¼P

�dn
em
� ðrÞ=dE ¼ dnðrÞ=dE, the density of states.

Since A�� and �A��=�UðrÞjV¼0 show the same sym-

metries with respect to B, one concludes that the character-
istic potentials are formally responsible for the violation of

the Onsager relations Gð2Þ. The same reasoning holds for
higher conductance coefficients.

Expressions for the coefficients GðnÞ are known to arbi-

trary order [15].Gð3Þ ¼ �e4=8h
R1
�1 dEð�@Ef0ÞTð3Þ, nec-

essary for what follows, reads

Tð3Þ ¼
Z

druð2ÞðrÞ�ðA11 � A12Þ
e�UðrÞ

��������V¼0
þ
Z

dr
Z

dr0
�
uð1ÞðrÞuð1Þðr0Þ þ 1

3

�
�2ðA11 � A12Þ
e�UðrÞe�Uðr0Þ

��������V¼0
; (9)

where uð1Þ � u1 � u2 and uð2Þ � u11 þ u22 � u12 � u21.
uð2Þ is the solution of [15,16]

�
�þ 4�e2

dn

dE

�
uð2Þ ¼ �4�e3½ðuð1ÞÞ2 þ 1� d

2n

dE2

� 2uð1Þ
�
d2nin1
dE2

� d2nin2
dE2

�
; (10)

which does not show any simple universal symmetry. We
conclude that the symmetry experimentally observed in
Gðn>1Þ are system specific, a subject we investigate next.

Model.—We address the electronic transport through an
AB quantum ring using the single-channel model put for-
ward in Ref. [17]. The scattering problem is defined by the
electron flow at the vicinity of the contacts as sketched in
Fig. 1. Incoming electron wave function amplitudes are
indicated by unprimed Latin indices, while outgoing ones
are denoted by primed letters. For instance, a� (a0�) is the
wave function amplitude of an incoming (outgoing) elec-
tron at the contact �.

The scattering by the contacts connecting the leads to

the ring is described by the scattering matrix Sð�Þ.
Assuming that (i) the effect of the magnetic field on the

electrons is negligible on the vertex length scale, (ii) the
scattering amplitudes are symmetric with respect to the

two branches of the ring, and (iii) Sð�Þ is real (the complex
part of the Smatrix can be introduced in the propagation at
the arms of the ring); one writes [17]

a0�
b0�
c0�

0
@

1
A ¼

�ð�� þ ��Þ 	1=2� 	1=2�

	1=2� �� ��

	1=2� �� ��

0
B@

1
CA

a�
b�
c�

0
@

1
A (11)

FIG. 1. Two-terminal Aharonov-Bohm ring [17]: Arrows show
the flow of the electron wave function amplitudes at the vicinity
of the contacts, which are indicated by triangles.
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with �� ¼ �ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2	�

p � 1Þ=2 and �� ¼
�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2	�
p þ 1Þ=2. The parameter 	� 2 ½0; 1=2� tunes

the reflection at the vertex �. The contact is closed for

	� ¼ 0 and maximally open for 	� ¼ 1=2. When Sð1Þ ¼
Sð2Þ the contacts are identical and the ring has, by construc-
tion, a reflection symmetry.

The electron propagation is described by a transfer

matrix which, for the upper arm, renders b2 ¼
eiðk‘1�
1Þb01 and b

0
2 ¼ e�iðk‘1þ
1Þb1, where k is the electron

wave vector, ‘1 is the arm length, and 
1 is the AB phase
accumulated by the electron while traversing the ring from
vertex 1 to 2. A similar transfer matrix can be written for
the amplitudes c and c0 by replacing ‘1 ! ‘2 and 
1 !
�
2. The full scattering matrix S�� is readily obtained

from Sð�Þ and the above described transfer matrices.
The electronic interactions are accounted for in

�S��=�UðrÞ as follows. We place a �-function scatterer

at the position r along the ring, calculate the modified
transfer matrices, and take the limit

�S��
�UðrÞ ¼ lim

�!0

S��½Uðr0Þ þ��ðr0 � rÞ� � S��½Uðr0Þ�
�

:

(12)

�S��=�UðrÞ is used to compute injectivities, emissivities,

and �A��=�UðrÞ.
To relate our numerical findings to experiments, we

choose the quantum ring diameter and set the effective
electron mass to keep about 50 electrons below the Fermi
energy. We present results for zero temperature.

Results.—Figures 2(a) and 2(b) illustrate typical injec-
tivities calculated with our model. They present disconti-
nuities at the contact positions, oscillations of periodicity
about 1=kF around plateaus of different amplitudes for
each arm. Oscillations in dnin� ðBÞ=dE are Friedel-like
fringes due to trapped charges coming from contact �
while the plateaus are related to the charge flow also
coming from contact �. By computing the emissivity we
verify microreversibility dnin�=dEðBÞ ¼ dnem� =dEð�BÞ.
We also check that

P
�dn

in
�=dEðBÞ ¼

P
�dn

em
� =dEðBÞ.

Since our primary goal is a qualitative understanding,
we do not attempt to microscopically model the screening
effects of a specific device. Instead, we use the contact
interaction approximation and algebraically solve Eq. (7)
to write the characteristic potentials as

u� ¼ 4�e2dnin�=dE

�2 þ 4�e2dn=dE
; (13)

where � is a constant that characterizes the electron inter-
action strength. In the one-dimensional case considered
here, � is dimensionless. We set � ¼ 0:1=ðkF‘Þ, with ‘ ¼
‘1 þ ‘2. Illustrative characteristic potentials are shown in
Figs. 2(c) and 2(d).

Inserting u�ðrÞ and �A��=�UðrÞ in Eq. (6) we obtain

Gð2Þ. Figure 3(a) shows Gð2Þ versus magnetic flux 
.
Because of the system spatial symmetry introduced by

taking Sð1Þ ¼ Sð2Þ, Gð2Þ is odd in magnetic field. This
peculiar nonlinear phase rigidity disappears as the spatial
symmetry is broken. To realize this, we transform the

scattering matrix of � ¼ 2 as Sð2Þ ! R�1
x ð�ÞSð2ÞRxð�Þ,

where Rxð�Þ is the matrix representation of a classical
rotation by � around the x axis. We observe that as �

increases the symmetry of Gð2Þ is gradually broken.

Figure 3(b) shows Gð2Þ for � ¼ �=6.
Phase locking in two-terminal devices is lifted as the

source-drain bias is increased. The phase shift in the AB

oscillations of Gð2Þ were experimentally studied by con-
trolling the electron density at a selected arm [9]. We
model this by changing the wave vector at one of quantum
ring arms, namely, k ! kþ �k. This is equivalent to in-
creasing the accumulated phase of the electrons flowing
through this arm by � ¼ �k‘i. Figure 3(c) shows the

conductance Gð2Þ for several values of �.

FIG. 2 (color online). Injectivity at � ¼ 1 (a) and � ¼ 2 (b)
for 
=
0 ¼ ��=4. The variable x 2 ½0; 1� describes the posi-
tion along the ring starting at the contact 1. Contact 2 is placed at
x ¼ 1=3. Characteristic potential, uð1ÞðxÞ for a symmetric bias
and magnetic flux (c) 
=
0 ¼ �=4 and (d) 
=
0 ¼ ��=4.

FIG. 3. Nonlinear conductance Gð2Þ as a function of 
=
0 for
both (a) a symmetric ring and (b) an asymmetric ring.
(c) Nonlinear conductance Gð2Þ for an asymmetric ring as a
function of magnetic flux for different values of � ¼ �k‘i. An
offset was introduced to separate the curves. (d) Phase of the first
harmonic of Gð2Þ as a function of the phase �.
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In experiments, dephasing suppresses the higher har-

monic contributions to Gð2Þ that correspond to electron
trajectories that go around the ring more than once.
Since our treatment does not include decoherence effects

we extract the first harmonic, �Gð2Þ, of Gð2Þ to interpret

the experimental data. Using the formula tanð�
Þ ¼
hGð2Þð
Þ sinð
=
0Þi=hGð2Þð
Þ cosð
=
0Þi [9] we evaluate
�
 for different values of �. Figure 3(d) collects the values
corresponding to the curves shown in Fig. 3(c). The de-

pendence of �Gð2Þ on � and the magnetic flux 
=
0 is
shown in Fig. 4.

In Fig. 3(d) we observe a smooth monotonic dependence
between �
 and �. Although the dependence is not linear,
except for small �, it is in accordance with the experiment
[9]. However, since the perturbation � modifies both, the
characteristic potential and the functional derivative of A��

in a nontrivial way, a monotonic behavior is not generic.
Varying the model parameters, we also find cases where
�
 shows fast jumps as well as nonmonotonic behavior as
a function of �. We conclude that despite eliminating the
phase rigidity by applying a large bias, it is still a difficult
task to use the nonlinear transport regime for interfer-
ometry studies.

We now turn our attention to the parity of GðnÞ with

respect to B. We already concluded that, in general, Gð3Þ is
neither even nor odd in B. Let us present a system specific
scenario that explain the experimental observations [9]:
Most inelastic processes are very weakly dependent on
the magnetic field. For a large bias, those give even parity
contributions to the I-V characteristics. Hence, we focus on
the odd parity contributions. When the contacts are equiva-
lent, the spatial symmetry imposes that u1ðB; rÞ ¼
u2ð�B; rÞ and the quantum coherent part of Gð2Þ is odd

in B. Similar arguments, applied to uð2Þ in Eq. (10), lead to
a purely evenGð3Þ. In this scenario, inelastic processes even
in B explain why Gð2Þ does not have a definite parity and

Gð3Þ has. The fact that the ring is quite open, favors the
hypothesis of nearly equivalent contacts. Further support
for this picture comes from the analysis of the h=2e oscil-
lations observed at low magnetic fields [9]. Those can be
attributed to paths going twice around the ring or to time-
reversed paths each traversing the ring only once [18].

While the first ones have no defined B parity, the latter
cause the Altshuler-Aronov-Spivak oscillations, which are
usually more robust and by nature even functions in B.
Hence, the absence of AAS oscillations in even part of the

measuredGð2Þ andGð4Þ is consistent with the hypotheses of
a nearly symmetric ring.
In summary, we presented a theoretical approach that

allows for a semiquantitative discussion of nonlinear trans-
port properties of ballistic mesoscopic devices, in particu-
lar, of AB rings. We described how phase rigidity is broken
in two-terminal devices as the voltage bias is increased. We
also found that the experimentally observed symmetry

Gð2nþ1ÞðBÞ ¼ Gð2nþ1Þð�BÞ is not generic and can be ex-
plained in terms of systems specific features. Further ex-
periments, exploring other control handles and geometries,
can greatly contribute to settle this problem.
We thank M. Büttiker, K. Ensslin, and R. Leturcq for

valuable discussions and acknowledge financial support
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Note added.—Related phenomena were very recently

reported on a different system: An AB ring with discrete
level spectrum due to an embedded quantum dot (QD)
[19]. Here, the weak tunneling strengths make the asym-
metry in the u’s much weaker than in our Letter and many-
body effects in the QD can play a dominant role.
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