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Physical Mechanism behind Zonal-Flow Generation in Drift-Wave Turbulence
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The energetic interaction between drift-wave turbulence and zonal flows is studied experimentally in
two-dimensional wave number space. The kinetic energy is found to be transferred nonlocally from the
drift waves to the zonal flow. This confirms the theoretical prediction that the parametric-modulational
instability is the driving mechanism of zonal flows. The physical mechanism of this nonlocal energetic
interaction between and zonal flows and turbulent drift-wave eddies in relation to the suppression of

turbulent transport is discussed.
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Turbulence is responsible for the major part of particle
and energy losses in toroidal fusion plasmas. Since the
discovery of a transport barrier in 1982 [1] the reduction
of turbulent transport by sheared £ X B plasma flows has
been intensively investigated. Of special interest is the
spontaneous generation of transport barriers triggered by
azimuthally symmetric, bandlike shear flows called zonal
flows. In magnetized plasmas, zonal flows have the poten-
tial to improve confinement mainly due to two mecha-
nisms: (i) the shear decorrelation mechanism [2,3] can
reduce turbulent diffusive step width and (ii) the zonal
flow is excited by the turbulence and thus is an energy
sink for the fluctuations. Since it is impossible for zonal
flows to drive radial E X B flows and, hence, turbulent
transport, for the turbulence this energy is lost [2]. Zonal
flows as a universal feature are also found in planetary
atmospheres and in the interior of the Sun [2]. Hence, the
investigation of the generation of zonal flows is also of
general interest in physics.

The interaction between turbulence and zonal flows has
been studied in many experiments ([4] and references
therein). Especially, the nonlinear drive of shear flows by
Reynolds stress has been demonstrated in the linear device
CSDX [5] and the reversed field pinch RFX [6]. Theory
predicts that zonal flows are driven nonlocally in k space
by the parametric-modulational instability [2]. For an ex-
perimental verification of the modulational instability as
the zonal-flow driving mechanism a scale resolved analysis
is required. To achieve this, usually, a bicoherence analysis
is carried out in frequency space. Thus, a nonlocal coupling
between turbulence and zonal flows, including the geode-
sic acoustic mode (GAM), has been demonstrated, e.g., in
Refs. [7-12]. The GAM is a finite frequency zonal flow.
However, a bicoherence analysis yields information on the
degree of phase locking of different modes only and, thus,
identifies modes that can couple with each other. Driving or
damping of zonal flows and the relative importance of the
various interactions can only be estimated from an energy
transfer analysis. Energy transfer studies of the turbulence-
zonal-flow interaction and the turbulent cascades have
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been carried out [13—17]. These studies were done in
frequency space, too, using Taylor hypothesis to transform
the fluctuations from frequency to k space. Furthermore,
the analyses were done in one dimension only. The physi-
cal processes, however, take place in the two-dimensional
wave number space [18].

This article addresses the nonlinear energy transfer be-
tween drift-wave turbulence and zonal flows in 2D k space
directly. The experimental observations contribute to the
understanding of both zonal-flow generation and turbu-
lence suppression. In a previous analysis [ 19] the turbulent
inverse cascade was investigated. The analysis revealed the
importance of nonlocal energy transfer for the inverse
cascading process. This work extends the validity of the
previous result to the nonlocal turbulent drive of zonal
flows. The consequences of this result for turbulence sup-
pression will be discussed.

Experiments have been carried out on the stellarator
experiment TJ-K, which confines a low-temperature
plasma with dimensionless parameters similar to those in
fusion edge plasmas [20]. The major and minor radii are
Ry = 0.6 mand a = 0.1 m, respectively. The working gas
was helium at a neutral gas pressure of p = 7 mPa. The
plasma had a line-averaged density of about 7 = 107 m~3
and was generated by microwaves at a frequency of
2.45 GHz and a power of 1.8 kW at a magnetic field
strength of B = 72 mT. The electron temperature was
about 7, = 9 eV and the ion temperature less than 1 eV.
The moderate temperatures allowed for measurements of
long time series (1 s at 1 MHz) with an array of 128
Langmuir probes arranged on four neighboring flux sur-
faces. Therefore, 32 Langmuir probes were positioned on
each of the four flux surfaces. The poloidal and radial
probe distances were 1.5 and 0.5 cm, respectively.
Details on the diagnostics can be also found in Ref. [21].
The floating potential fluctuations are interpreted as plasma
potential fluctuations ¢, which has been shown to be valid
for TJ-K plasmas [22]. The measured potential fluctuations
are normalized to the electron temperature, ¢ = ed/ T,.
Measured ion-saturation current fluctuations are inter-
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preted as density fluctuations 71 and are normalized to the
background ion-saturation current, n = 7i/n,. All lengths
are normalized to the drift-scale parameter or hybrid
Larmor radius p, = /(m;T,)/(eB) = 1.2 cm, with m; the
ion mass and e the elementary charge.

The data from the 2D probe array were analyzed in
k space directly. The energy transfer was calculated using
the technique by Camargo et al., which has been developed
for the analysis of drift-wave turbulence based on the
Hasegawa-Wakatani equations [23]. The use of the
Camargo method should be justified, since in many experi-
ments it has been well established that turbulence in TJ-K
is dominated by drift waves [20,24,25], Previously, the
method has been tested successfully on Hasegawa-
Wakatani simulations and it was used for the investigation
of the dual cascade on TJ-K [19]. A discussion of the
applicability of this method for TJ-K plasmas can be found
in Ref. [19]. In the following, the transfer of the fluid
kinetic energy EY (k) = 1/2|k ¢ |?, the density fluctuation
activity EV(k) = 1/2|ny|?, and the mean squared vorticity
EY(K) = 1/2|k*¢y|*> will be calculated. The spectral
transfer T(k < k) of these quantities from mode k; to
mode k is given by the following expressions [19,23]:

TV(k —Kky) = —2(k,kg; — k,1kg)k3Re( by b, by, ),
(D

TV(k —kq) = —2(k,kg; — kpkg)Re(ny dy,ng,),  (2)

TV(k —kq) = 2(k,kgy — k,1kg)K*KIRe( by bi, dic,)-
(3)

Here (-) denotes the ensemble average taken as a time
average. The asterisk denotes the complex conjugate and
Re the real part of a complex number. The common factor
k.kg, — k. kg is intrinsically two dimensional (r and 6
denote the radial and poloidal directions, respectively)
and follows from the nonlinearities of the system. Thus,
a two-dimensional treatment of the energy transfer is es-
sential and a 1D adaptation must be interpreted with
great caution. The multiprobe array enables a two-
dimensional treatment of the nonlinear behavior with
high poloidal resolution ky € {—16,...,16}Q27/(32 X
0.015p,)), whereas the radial resolution is poor k, €
{=2,—1,1,2}27/(32 X 0.005p,)).

Figure 1 shows the result of the analysis of the fluid
kinetic energy transfer function. 7V (k «— k) forms a four-
dimensional quantity depending on (k,, kg1, k2, kg), with
the constraint k = k; + k,. Hence, for a graphical repre-
sentation, sums of all contributions (k,, k,.{, k,, # 0) at
given kg and kg, have been taken and divided by the
number of contributions. For the interpretation of this
type of representation see also Ref. [26]. In addition the
total transfer function Ty (kg) = ¥, T" is included into
the figure. The curve is a projection of the 2D data on the
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FIG. 1 (color online). Nonlinear fluid kinetic energy transfer.

kg = kg1 + kg axis. The vertical line in the total transfer
function figure is the zero transfer line. First concentrate on
the kg = 0O contribution, which can be put on a par with the
zonal flow, since only contributions with finite k, # 0 have
been considered. Contributions coupling into k, = 0 are
found on the diagonal line with kg = —kg,. One clearly
observes a coupling of the zonal flow (k, = 0) with the
drift-wave modes (kg; # 0). In the 2D plot, a small energy
transfer from kg = 0 (corresponding to a poloidal mode
number of m = 0) to kg; = 0.2 (poloidal mode number
m = 1) is visible. This could indicate the energy transfer
from the zonal flow into the GAM. Theoretically, this is the
channel through which GAMs can be driven [18,27,28].
All other modes couple energy to the zonal flow. The
energy transfer function TY, at k, = 0 is strongly positive,
which represents a net energy transfer from the drift-wave
turbulence to the zonal flow. One sees that the energy
transfer to the zonal flow comes predominantly from
smaller scales (kg = 1). Thus, the energy transfer is
mostly nonlocal. This confirms the theoretical prediction
that the parametric-modulational instability is the driving
mechanism of zonal flows.

In addition, the spectral transfer functions of the density
fluctuation activity and the mean squared vorticity have
been evaluated. To this end, potential and density fluctua-
tions were measured simultaneously on alternating probe
tips. This reduces the spatial resolution of the probe array
by a factor of 2. In Fig. 2, the results for all energy transfer
channels are shown at the reduced resolution. The energy
transfer from the smaller scales, which in Fig. 1 was found
to be dominant, cannot be resolved anymore at this reso-
lution. However, the basic result, namely, the energy trans-
fer from turbulence into the zonal flow, can be
demonstrated at this resolution, too. As expected from a
comparison of Eq. (1) with Eq. (3), the enstrophy transfer
TV shown in Fig. 2(c) is into the opposite direction of that
of TV and is weighted by k*>. The density fluctuation

165004-2



PRL 103, 165004 (2009)

PHYSICAL REVIEW LETTERS

week ending
16 OCTOBER 2009

a) b) c)
TV TN TW 2x10*
500 0.01
1x10°*
N ’ W
T WO B T tot 5 & 0 T tot ' L 2 0
totQ 0
. K D < ’ . -1x10°
K 02 Ko
L -500 1 -0.01 1 \ -2x10°
1 . ; .
1 1 1 1 1 1 O 1 0 1
0 k61 ! k61 kel

FIG. 2 (color online).

(a) Nonlinear fluid kinetic energy transfer, (b) nonlinear density fluctuation activity transfer, and (c) nonlinear

fluid enstrophy transfer. Note that the resolution is only half of the one in Fig. 1.

activity TV [Fig. 2(b)] shows no significant transfer be-
tween turbulence and fluctuations with m = 1 (k, = 0.2).
m = 1 density fluctuations would be a signature of a GAM.
Hence, this finding is consistent with the theoretical ex-
pectation [18] that GAMs tap their energy from the zonal
flow and not from broadband turbulence.

The experimental findings from above are now inter-
preted with the help of Fig. 3. It sketches the temporal
evolution of eddies embedded in a large-scale strain
field as from the zonal-flow vorticity. The two figures differ
mainly in the third time step. In the second step [Figs. 3(b)
and 3(d)] due to the flow shear the eddy will be tilted and
elongated [29]. Since the circulation of an eddy is con-
served, the velocity around the eddy is lowered and its
energy is reduced [30,31]. At the same time, the velocity of
the eddy is now mainly directed such that it reinforces the
large-scale strain [30,31]. Thus energy is transferred from
the eddy to the zonal flow by an elongation and tilting (and
thinning) of the eddy. This process is most effective if the
scale of the interacting flows is clearly different, as in the
case of zonal flows and small-scale vortices. A large-scale
eddy has a stronger vorticity and can persist unmodified (or
“unmodulated’”) [32]. This is the reason why the energy
transfer to the zonal flow (but also in the inverse cascade
[19,30,31]) is highly nonlocal as confirmed by the present
analysis.

Finally, the meaning of the energy transfer for the re-
duction of turbulent transport is addressed. Since the
tilting-stretching mechanism transfers energy to the zonal
flow, the energy in the turbulence is reduced, which should
lead to reduced fluctuations amplitudes and transport. In
fusion research it is widely assumed that the eddies are
stretched and finally torn apart by the shear flow as shown
in Fig. 3(c). The breaking up of eddies does not cause
further energy transfer to the zonal flow, but it reduces the
step size of turbulent diffusion and therefore should reduce
transport.

In fluid turbulence it is observed, however, that in-
stead of breaking apart smaller eddies are further elon-
gated and coiled up by the larger flow [29,33,34]. The
elongated eddies are finally destroyed by a straining-out
process [33,34]. This corresponds to the illustration in
Figs. 3(d)-3(f). In this process the entire energy of the
eddy can be transferred to the zonal flow and additional
energy is taken out of the fluctuations driving turbulent
transport. This mechanism is directly related to the gen-
eration process of the zonal flows. The fact that in experi-
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FIG. 3. Artist’s view of the zonal-flow generation and accom-
panied turbulence decorrelation. (a)—(c) The common decorre-
lation mechanism: the eddies are torn apart. (d)-(f) Vortex
thinning mechanism: the eddies are taken over by the zonal flow.
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ments in general the breaking up of eddies is not observed,
supports the argument that energy transfer by tilting and
straining out of the small-scale eddies is the main cause for
the reduction of turbulent transport.

In summary, the energy transfer between drift waves and
zonal flows has been investigated experimentally in a
toroidally confined low-temperature plasma using an ex-
tensive 2D probe array. The energy transfer from turbu-
lence to the zonal flow has been analyzed directly in wave
number space. It has been shown that the energy transfer is
highly nonlocal. This nonlocality provides an experimental
evidence of the parametric-modulational instability, which
is inherently nonlocal in k space, as the main driving
mechanism of zonal flows by a turbulent drift-wave spec-
trum. In particular, the energy transfer to the zonal flow is
found to be predominantly from the small scales. The
physical mechanism of the zonal-flow drive consistent
with this observation is an elongation and tilting of small
eddies by the zonal flow.
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