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Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
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Bursty transport phenomena associated with convective motion present universal statistical character-
istics among different physical systems. In this Letter, a stochastic univariate model and the associated
probability distribution function for the description of bursty transport in plasma turbulence is presented.
The proposed stochastic process recovers the universal distribution of density fluctuations observed in
plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness
S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other
physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus
X-1 accretion disc plasmas and the sea surface temperature fluctuations.
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Plasma turbulence and the associated heat and particle
transport play a major role in the levels of plasma confine-
ment in magnetic fusion devices. In the plasma edge the
turbulent fluctuations are large and bursty due to the con-
vective motion of strongly nonlinear structures formed
during the nonlinear saturation of plasma instabilities.
Such coherent structures in an unambiguous manner effec-
tively contribute to radial transport and to intermittency
[1]. As a result, the transport process departs from the
diffusive picture associated with the Gaussian case of
weak independent fluctuations.

In order to understand the underlying mechanism of the
turbulent transport in the plasma edge, it is crucial to
investigate the statistical characteristics of these bursty
fluctuations. Experimental investigations have indeed re-
vealed the bursty nature of particle transport in the scrape
of layer (SOL) of magnetically confined plasmas [2]. The
appearance of structures such as plasma blobs, avaloids [3]
is attributed to the formation of field-aligned structures—
induced by the charge separation of the magnetic curvature
drifts—that propagate radially far into the SOL.

The statistical behavior of the density fluctuations as-
sociated with such bursty dynamics has been investigated
in several experiments. A comprehensive study [4], that
included measurements from various magnetic confine-
ment devices—including TORE SUPRA, MAST and
ALCATOR C-MOD—showed that the associated extreme
probability distribution functions (PDFs) are universal (see
Fig. 1) in the sense that have the same properties in many
confinement devices with different configurations.

Remarkably, similar [5] extreme distributions have been
also observed for the bursty X-ray fluctuations associated
with transport events in the Cygnus X-1 accretion disc
plasmas that are linked to instabilities which give rise to
turbulent transport and extreme statistics (see Ref. [6] and
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Fig. 12 therein). However, known forms of extreme
PDFs—such as the Fréchet or the Gumbel distributions—
do not have [6] the proper form to fit well the experimen-
tally observed distributions associated with bursty convec-
tive transport processes.

Bursty dynamics is characterized by strongly non-
Gaussian PDFs and nonvanishing probabilities of extreme
events. In such dynamical systems, the higher order mo-
ments are commonly used to determine the scaling prop-
erties of the fluctuating fields. The non-Gaussian features
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FIG. 1. The PDF plot of the ion saturation current in the Tore
Supra (solid line), Alcator C-Mod (thick solid line), MAST
(dashed-dotted line), and PISCES (dots). The ion saturation
current was normalized to the standard deviation and the integral
of the four PDFs is set equal to 1. Figure reprinted with
permission from Ref. [4] (http://link.aip.org/link/?PHPAEN/10/
419/1), Fig. 3, Copyright 2003, American Institute of Physics.
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are usually quantified in terms of skewness and kurtosis of
the PDF of fluctuating fields. For a centered random vari-
able %, i.e. (X) = 0, with variance o2, skewness is defined
by the S = (¥})/0> and the kurtosis (in the newer litera-
ture) by K = (#*)/0* — 3. Skewness is a measure of
asymmetry of a PDF; if the left tail is more pronounced
than the right tail, the PDF has negative skewness and
when the reverse is true, it has positive skewness.
Kurtosis measures the excess probability (flatness) in the
tails, where excess is defined in relation to a Gaussian
distribution.

Using ten thousand observed density fluctuation signals
measured in TORPEX, Labit et al. [7] showed that a
unique parabolic scaling relation holds, K = 1.5025% —
0.226, between the skewness S and the kurtosis K (see
Fig. 1 of Ref. [7]). It was also shown that the PDFs of the
measured signals, including those characterized by a nega-
tive skewness can be described by a special case of the Beta
distribution. The density fluctuations were associated with
regimes of drift-interchange (D-I) turbulence generated in
regions of bad magnetic field curvature and convected
away by the E X B fluid motion.

Remarkably, there is a striking similarity of the observed
K — § scaling with that of sea surface temperature (SST)
fluctuations that are governed by advection through ocean
currents [8]. Sura and Sardeshmukh [8] proposed a non-
linear Langevin model that can predict the observed scal-
ing in some limits of the model parameters while Krommes
[9] generalized it to include linear waves—an essential
feature of D-I turbulence—and he numerically calculated
the associated PDF that includes four independent parame-
ters. The fact that the same scaling applies to different
physical situations leads to conjecturing that the scaling
arises due to basic constraints. The general mathematical
constraints on the K — § relation, as arise from the defini-
tion of kurtosis and skewness [10], do not provide any
insight about the observed scaling. A recent comprehen-
sive study on the observed K — § scaling between various
fusion devices showed that the data align along parabolic
curves [11]. A phenomenological model using the assump-
tion that the fluctuating signals include a linear combina-
tion of two basis (Gamma or Beta) PDFs attempting to
accommodate experimental evidence was also provided.
However, the large number of the free parameters entering
to the model and the small difference between using one or
a sum of two Beta PDFs make the model less flexible [11].

It becomes evident that these observations among differ-
ent physical systems reveal a universal character associated
with strongly non-Gaussian processes. However, the key
question is what kind of underlying mechanism is respon-
sible for the universally observed statistical features and
what PDF can describe them. In this Letter, a univariate
model for the statistical description of bursty fluctuations is
presented, using as an example the aforementioned plasma
edge density fluctuations. The associated PDF is derived
and it is shown that it recovers the universally observed
distributions, documented in Ref. [4] and the remarkable

parabolic scaling between skewness and kurtosis as well,
documented in Ref. [7]. The derived results have universal
character, and thus may be applicable to all aforemen-
tioned physical systems.

The nonlinear processes described by the standard mod-
els of turbulence in magnetized plasma are quadratic and
are linked with small or large scale convection processes
attributed to electric drifts. Thus, it is natural one to assume
that the universally observed statistical characteristics as-
sociated with the bursty behavior of fluctuations may be
attributed to processes that emerge from the nonlinear
quadratic interaction between turbulent fields. However,
extreme statistical features are expected to appear when
strong non-Gaussian processes coexist with Gaussian ones.
In order to describe the associated universal statistical
properties, we propose a univariate non-Gaussian process
W(r) given by:
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which results from the superposition of a Gaussian Z(r)
(with standard deviation o) with a non-Gaussian process
attributed to the square of Z(¢). The latter corresponds to
the strongest quadratic nonlinearity that may arise due to
the interaction of fluctuating fields. The coefficient vy, in
front of the quadratic non-Gaussian component is a pa-
rameter that measures the deviation of W(z) from
Gaussianity. The process W(z) may well describe extreme
bursty behavior of fluctuations that is characterized by
nonlinear structures (blobs, avaloids) that travel (convect)
through a sea of Gaussian fluctuations. Figure 2 presents
some typical time series W(z) calculated from Eq. (1) by
using a centered random Gaussian fluctuation Z(z). In all
cases the bursty nature of W() is evident. For the sake of
simplicity, from now on, we drop the dependence of Z and
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FIG. 2 (color online). (a) Example of bursty time series W(z)
for different values of y: (a) —0.11, (b) 0.031, (c) 0.98, corre-
sponding to negative (top), positive (middle), and significantly
large positive (bottom) skewed distributions, respectively.
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W on time and consider that Z is a centered Gaussian
process. It should be noted here that the process described
by Eq. (1) has been presented in the literature [12] as a
characteristic simple-to-construct non-Gaussian process
and was used as an example for the calculation of the
systematic errors of covariances and moments up to fourth
order of non-Gaussian time series.

For the derivation of the PDF p(w) of the random
process W(t), we express the cumulative distribution func-
tion (CDF) P(w) as follows

P(w) =Pr(W = w) =Pr(y(Z — 2 )(Z —2) = 0), (2)
where z; and z, are the roots of the polynomial
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Equation (2) can be expressed in terms of the CDF P(Z) at
Z = 71, 2o and p(w) can be derived by a simple differen-
tiation that leads to the following expression:

( 0, when A, = 4y(w — wy) <O else;
w) = N 4)
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where wy = —(4y)~! — y. The value and the sign of
parameter 7y controls the shape and the range of nonzero
values of p(w). For y = 0, the p(w) reduces to that of a
centered Gaussian random process. For y >0 (y <0) a
cut off value wy exists and p(w) gets asymmetric present-
ing long tails in the positive (negative) axis (cf. Fig. 3). The
minimum (in absolute sense) value of the cutoff is equal to
wom = =1 and corresponds to y = ¥1/2.

In Fig. 4, we have plotted p(w) choosing positive values
of 7y that range up to y = 0.2. The resulting distributions
exhibit the same behavior with the measured distributions
of plasma edge density fluctuations, as have been observed
in several magnetic confinement devices and presented
here in Fig. 1. Note, that the characteristic clustering of
the PDF curves around 0.05 for values around 2.5 which is

log[(p(w)]

FIG. 3. The family of distributions p(w), for different values of
vy = —2,-0.02, 0, 0.02, and 2. The symmetry with respect to y
is evident. As 7 increases the absolute value of the cutoff
decreases (increases) for y < 0.5 (y > 0.5).

experimentally observed (cf. Fig. 1) is recovered by the
distribution p(w) (cf. Figs. 3 and 4)—independently on the
value of y > 0—a characteristic that is not recovered in the
plots of PDF in Ref. [9]. Similar features appear also in the
PDF of the x-ray observations associated with anomalous
transport in accretion disks (cf. Fig. 8 of Ref. [6]).
Unlike, to the BHP distribution [13] which does not have
any free parameter, p(w) depends on vy such that its higher
order moments can receive multiple values. Furthermore,
the existence of a single free parameters allows p(w) to be
used for the fitting of experimentally observed distribu-
tions. The high order moments of multivariate Gaussian
processes can be determined by a simple method based on
the Wicks theorem. All odd moments are zero and all even
moments can be reduced to homogeneous polynomials.
For the considered process W, the values of skewness and
kurtosis depend on the value of y and are given by [12],

3+4y?
S=2y—"""Y _ and K = 48y*
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Y1+ 220
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For y = 0, W gets Gaussian and K = S = 0. As |y| in-
creases K and S converge to their extremes K,,,, = 12 and
Smax = 232, respectively, in agreement with the range of
the values reported in the Letter by Garcia et al [14], where
intermittent transport in plasma edge — SOL is numerically
investigated. Using the parabolic ansatz, K = aS? + b for
the parametric relations in Eq. (5), it can be easily found
that

(1+ )0 +2y?)
(3 + 4y2)?

aly) = 12 andb=0. (6

The function a(y) converges rapidly to a = 3/2, which is
exactly the value of the universally observed parabolic
scaling, reported in Refs. [7-9]. It is interesting to compare
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FIG. 4. The family of distributions p(w), for y = 0.05, 0.1,
and 0.2. The resulting PDFs recover the universally observed
distributions presented at Fig. 1.
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FIG. 5 (color online). The K — S curve for stochastic pro-
cesses described by quadratic polynomial of Gaussians. The
solid line corresponds to W(¢) and the dashed line to the Wp(z)
process.

the K — S curve of Eq. (5) to that associated to the product
of two central Gaussian processes with correlation yr, i.e.,
Wr = yrZ,Z,, given by
2
3+ vt

1+ 6’)/% + yii
1+ 7

(1 + y})?
(7)

respectively. The parabolic relation, K = arS? + by, be-
tween St and K, results to the derivation of the following
coefficients:

SF = —2‘)/1‘ and KF =6

_ 6(1 + 'y%)
B+ 1)

Note that for |yp| = 1, the values of kurtosis and skewness
are equal to K, and S,,,, while for yr = 0, are equal to 6
and 0.

Equations (5) and (7) define a closed curve in the K — S
space for continuous values of the parameters y and yp
(see Fig. 5). The low boundary of the curve corresponds to
extreme bursty processes W given by Eq. (1) and distrib-
uted according to p(w), while the upper boundary corre-
sponds to W which is distributed according to the “‘local
flux PDF” [see Eq. (7) in Ref. [15]]. The clustering of the
K — S values around the K = 1.55? curve is clearly seen in
Fig. 1 of Ref. [7] and in Fig. 3 of Ref. [8].

It is straightforward to show numerically, that for non-
Gaussian processes (described by second order polyno-
mials of Gaussians) the “cloud” of K — S points fall into
(not shown here) the closed curve. The latter follow a para-
bolic trend—similar to the experiments [11]—with scaling
that depends on the selection of the polynomial coeffi-
cients. Furthermore, for processes described by higher

ar and by = 6. (8)

order Gaussian polynomials the ‘“‘cloud” follows also
parabolic trend including much higher values of K and S.

In conclusion, a univariate stochastic model for the
description of extreme bursty fluctuations W based on
generic properties of quadratic nonlinearities is presented.
The model and the associated probability distribution func-
tion describe statistical properties of the SOL density
fluctuations which are governed by the £ X B convection.
The universal character of the stochastic process stems
from the fact that the associated extreme PDF recovers
properties of variabilities (density, sea temperature, x-ray
intensity) observed at boundary regions (SOL, sea surface,
accretion edge) of different physical processes that are
characterized by convection (electric drift, ocean current,
rotation). The proposed univariate stochastic model de-
scribes the statistical characteristics of these relaxation
phenomena at a state of extreme statistical behavior. It is
evident that the parabolic relation between S and K when
observed provide relevant information about the under-
lying processes.
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