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Oppositely charged drops attract one another and, when the drops are sufficiently close, electrical

stresses deform the leading edges of each drop into cones. We investigate whether or not the liquid cones

coalesce immediately following contact. Using high-speed imaging, we find that the coalescence behavior

depends on the cone angle, which we control by varying the drop size and the applied voltage across the

drops. The two drops coalesce when the slopes of the cones are small, but recoil when the slopes exceed a

critical value. We propose a surface energy model (volume-constrained area minimization) to describe the

transition between these two responses. The model predicts a critical cone angle of 30.8�, which is in good
agreement with our measurements.
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When two drops of the same liquid come into contact,
we expect them to coalesce because the combined drop
minimizes the surface energy [1]. Accordingly, when drops
fail to coalesce, the focus is typically on phenomena that
prevent direct contact. For example, surfactant [2] and
colloidal [3] coatings prevent the drops from contacting,
while dynamic processes such as evaporation [4] or vibra-
tion [5] maintain a layer of immiscible fluid between the
drops. If this fluid layer is penetrated by a meniscus bridge
connecting the drops, coalescence is typically assumed to
proceed. However, oppositely charged drops placed in
sufficiently large electric fields fail to coalesce even
when the two drops directly contact [6,7]. To interpret
this noncoalescence, we develop a theoretical model based
on the shape of the meniscus bridge and the local capillary
pressure within this region. In addition, we provide an
extensive set of experimental data that are in good agree-
ment with the theoretical predictions.

Electric fields cause liquid droplets to develop conical
structures oriented in the direction of the field [8–12].
Commonly referred to as Taylor cones [8,13,14], these
structures result from a balance of charge induced pressure
from the applied electric field and capillary pressure resist-
ing interfacial deformation. The balance of these two
effects is quantified by the nondimensional electrocapillary

number, Ec ¼ ��0E
2a

� , where ��0 is the permittivity of the

liquid, E is the magnitude of the electric field, a is the
radius of the drop, and � is the surface tension. At suffi-
ciently high values of Ec, an uncharged single drop will
develop two opposing conical tips aligned with the field.
Similarly, drop pairs also deform in an electric field. The
dynamics of a pair of drops aligned with an electric field
have been investigated for both inviscid [15–18] and vis-
cous responses [19–21]. Each drop enhances the deforma-
tion of the other, and below a critical separation distance,
the drops become unstable and rapidly converge.

Numerical simulations suggest that inviscid drops develop
rounded, but highly distorted, tips as they converge, and
that these tips become pointed at contact [18]. Unlike
Taylor cones, which have a well-defined angle, the conical
tips in the inviscid simulations show cone angles that vary
with the electrocapillary number.
None of the above studies considered the behavior of

drop pairs after contact. Thus, we begin by showing ex-
perimentally (Fig. 1) that above a critical field strength,
water droplets deform into sufficiently steep cones and fail
to coalesce. We argue that the dominant role of the electric
field is to distort the drops prior to contact, and that the
subsequent dynamics depend predominantly on capillarity.
The coalescence-noncoalescence transition we describe
acts as a ‘‘gate,’’ preventing drops of a particular size and
interfacial charge from coalescing. The goal of this Letter
is to characterize this transition, as well as provide addi-
tional insight into the underlying physics.

FIG. 1. (a) A voltage �� is applied across a pair of drops that
are suspended on needles separated by a distance d (here d ¼
1:9 mm). (b) Prior to contact, each drop deforms into a cone with
angle �. At lower voltages, the drops immediately coalesce;
�� ¼ 815 V. (c) At higher voltages, the drops contact and then
recoil; �� ¼ 822 V. Note the slight misalignment of the nee-
dles in (a) demonstrates the robustness of this phenomenon.
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Our experimental setup consists of two stainless steel
needles separated by a gap d [Fig. 1(a)]. A power generator
supplies a controllable voltage �� across the needles.
After the voltage is applied, deionized water (conductivity
� ¼ 4 �S=cm is slowly injected through the needles to
form nearly spherical drops; the speed due to injection is
�100 �m=s. Once the drops reach a critical size, the drops
become unstable and electric forces bring them together
(speed�1 m=s). The onset of the instability and the subse-
quent dynamics are recorded at 67 000 frames per second
with a Phantom V7 camera and analyzed with custom-
written MATLAB algorithms. These steps are repeated for
different gap sizes and voltages. To test the effects of the
dielectric strength of the surrounding gas, we conducted
experiments in three gases: air, helium, and sulfur hexa-
fluoride.

The high-speed images demonstrate that the drops gen-
erally deform into a double cone near the point of contact
(Fig. 1). We observe one of two distinct behaviors after the
drops contact. At sufficiently low voltages, the drops ap-
proach, contact in the shape of a double cone, and generate
a growing fluid neck that leads to coalescence [Fig. 1(b)].
In contrast, at sufficiently high voltages, the drops deform,
contact in the shape of a double cone, and then quickly
repel [Fig. 1(c)]. After the drops initially recoil, they
approach a second time, presumably due to charge accu-
mulation from the voltage source. Often the drops will no
longer be conical during the second contact and will co-
alesce (see supplemental movie [22]). The implication is
that noncoalescence is due to the shape of the interface
rather then the strength of the field. The recoil and sub-
sequent coalescence typically occur within a millisecond
and therefore might explain why this phenomenon has not
been reported previously. Here, we focus on the initial
dynamics following the first contact.

The cone angle � is positively correlated with the ap-
plied voltage and negatively correlated with the needle
separation (Fig. 2). When no voltage is applied (��¼0),
the drops are nearly spherical and � ¼ 0. For a given sep-
aration distance, there is a critical voltage when the drops
no longer coalesce. At the highest voltages in our study, we
observe a visible gap between the two surfaces prior to
recoil. Because of limitations in frame rate, we cannot
discern drops that contact between frames from those
that do not contact. In our analysis, we determine � by
estimating the angle assuming contact in these situations.

The coalescence between two oppositely charged drop-
lets is expected, whereas the recoil is not. We suggest three
mechanisms that could lead to this type of transition. First,
high voltage may cause dielectric breakdown in the gas. If
sufficient charge passed through the surrounding gas, the
conical drops could neutralize prior to contact and recoil
under the influence of surface tension. We tested the break-
down hypothesis directly in our setup by surrounding the
liquid drops with gases that have noticeably different di-
electric strengths. For each gas, we measured the minimum
voltage required for a spark to be visually observed across

the bare needles. Dielectric strengths of 0:76, 2:1, and
5:4 kV=mm were recorded for helium, air, and sulfur
hexafluoride, respectively, which is consistent with re-
ported values [23]. If dielectric breakdown of the gas
were responsible for the coalescence-recoil transition,
then an increase in the dielectric strength of the gas would
require a larger critical voltage ��c to bring about the
transition. However, our results (Fig. 2 inset) contradict
this hypothesis.
The second possibility is that the recoil is a consequence

of Joule heating. Once the drops contact, the charge equili-
bration could significantly heat the liquid in the neck
region, leading to Marangoni effects or complete vapor-
ization. Because Joule heating is proportional to conduc-
tivity, the critical voltage would also depend on the fluid
conductivity for the recoil mechanism to be Joule heating
related. However, there is no significant difference in the
critical voltage when the fluid conductivity is varied be-
tween 4 and 163 �S=cm (Fig. 2) [6].
We propose a third possibility in which the coalescence-

recoil transition is a consequence of the drop geometry. In
existing models of coalescence and breakup, the dynamics
are often explained by the shape of the neck region [24].
When two spherical drops touch, the contact generates
capillary waves, which create an expanding liquid neck
between the drops [25]. The negative curvature across the
neck is much larger than the positive curvature around the
neck, leading to lower fluid pressure in the neck than in the
center of the drop. This capillary pressure difference drives

FIG. 2. The cone angle � varies based on the voltage and size
of the drops. After contact, the drops either coalesce (open
symbols) or recoil (closed symbols). The coalescence-recoil
transition for deionized water drops at various needle separa-
tions, d ¼ 1:9 mm (�,d), 4.3 mm (h,j), and 5.1 mm (e,r),
occurs at different voltages, yet at similar cone angles. These
features are consistent with previously reported data that focus
on varying conductivity, � ¼ 4 �S=cm, d ¼ 2:4 mm (4,m),
and � ¼ 163 �S=cm, d ¼ 2:8 mm (5,.) [6]. Inset: The critical
voltage between coalescence and recoil decreases, rather than
increases, with the dielectric strength of surrounding gas.
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fluid into the meniscus resulting in drop coalescence
[Fig. 3(a)]. In contrast, the instability in a liquid thread
leads to a neck region with a negative curvature across the
neck that is much smaller than the positive curvature
around the neck [Fig. 3(b)]: the capillary pressure in the
neck is positive, creating a flow away from the region and
eventually causing the thread to break up. These physical
arguments suggest that a coalescence-breakup transition
may occur for conical drops, as the geometry typically
has comparable curvatures across and around the neck
[Fig. 3(c)]. We now estimate at what angle this transition
would occur.

A two-dimensional analog of the coalescing cones has
been solved numerically and leads to a self-similar neck

with height w that grows as w� ð�t2� Þ1=3, where t is time

and � is the fluid density [26]. By extension, we expect that
in three-dimensions, the interplay of inertia and capillarity
also leads to a self-similar, axisymmetric neck region, the
precise shape of which requires detailed numerical analysis
beyond the scope of this Letter. Unlike the planar analog,
the axisymmetric profile has radial curvature that can
prevent coalescence. Here, we approximate this self-
similar profile as the geometry that minimizes surface
energy while conserving volume, as this provides a unique
shape that exists for any cone-angle and appears qualita-
tively similar to the shapes observed from experiments.
Moreover, we expect that a minimal surface profile would
become more accurate near the transition point as inertial
forces change direction.

Figure 3(c) is a schematic of our quasistatic model for
coalescence, in which we have normalized the neck region
by w. For a given cone angle, �, the fluid is redistributed
within the neck volume V so as to minimize the neck
surface area S. We minimize the energy functional F ¼
�S� pV, where p is an unknown constraint constant that
physically corresponds to the capillary pressure. Using the
Euler-Lagrange relation, we find that the dimensionless
axisymmetric profile ~rðz=wÞ must satisfy

1þ ~r02 ¼
�

~r

kþ pw
2�

~r2

�
2
: (1)

The solution to this differential equation has three un-
known constants (k, p and one integration constant); this

necessitates three boundary conditions. We impose that the
neck connects with the unperturbed fluid, ~rð�1Þ ¼ cot�,
and we require that the volume of the neck,

R
1
�1 �~r

2dð zwÞ, is
equal to the initial volume of the perturbed region, 2�3 cot2�

[Fig. 3(c)].
There is a critical angle �c where the capillary pressure,

p, switches signs. By solving (1) with p ¼ 0 and satisfying
the boundary conditions, we find that

�c ¼ cot�1½k coshð1=kÞ�;
where 6 ¼ 4cosh2ð1=kÞ � 3k sinhð2=kÞ:

(2)

The numerical solution to (2) is k � 0:582, leading to a
critical angle �c � 30:8� and slope of the cone, tan�c �
0:596. We note that in a study of electrically mediated
bouncing of oppositely charged drops [6], a crude capillary
pressure model yielded a critical angle 45�. The detailed
analysis of the full curvature presented here predicts an
angle (�31�) that is in good agreement with the experi-
mental transition in Fig. 2.
In this coalescence model, the electric field simply sets

the cone angle; after contact, the proposed dynamics is
independent of ion flow. This attribute of the model is
consistent with two observations. First, the observed tran-
sition is independent of the fluid conductivity, whereas ion
flow is generally not. Second, as shown in Fig. 4, the data in
Fig. 2 collapse on to a master curve when rescaled by the

electrocapillary number Ec ¼ ��0ð��Þ2a
�d2

. Note that the elec-

tric field E in the earlier definition of Ec has been replaced

by ��
d . Here, we show that the transition occurs for Ec �

Oð1Þ (Fig. 4) indicating the importance of the cone angle,
as the shape of the interface depends on the balance of
electric and capillary forces. The role of the electric field
implies that whenever conical drops contact, the cone
angle will determine whether or not the drops coalesce
regardless of whether the cone angle was established by
electrical hydrodynamics or by some other field, such as
flow [27].
As a final remark, we discuss the shape of the conical

drop near contact. Figure 4 demonstrates that the cone

slope is tan� � 0:7E1=2
c . Although we are currently unable

to offer an analytic explanation, the results are nearly

FIG. 3. (a) When two spherical drops contact, the curvature of the neck leads to a low local liquid pressure resulting in inward flow
and coalescence. (b) The local curvature in an unstable liquid thread leads to a high pressure resulting in outward flow and pinch off.
(c) We propose that immediately after two conical drops contact, there is a self-similar neck region, which we approximate as a
volume-conserving minimal surface. We then calculate if the resulting curvature raises or lowers the local pressure, which is
responsible for the resulting fluid motion.
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identical to the angles that we have extracted from illus-
trations of the simulations reported by Brazier-Smith et al.

[18], provided that we take the simulated electric field E ¼
��
d . There are two implications from this finding. First, the

results from our experiments can be extended to the setup
of the simulations, which consisted of a constant electric
field across two inviscid drops freely suspended in a fluid
of constant pressure. Second, the similarity between the
experiments and simulations provide additional evidence
that the drops make contact. In [18], the deformed drops

contacted when
ffiffiffiffiffi
Ec

p � 1:2, which corresponded to � �
40:1�, or tan� � 0:84. Therefore, we expect that the pair
of drops in our experiments also make contact when � �
40:1�, even when these drops subsequently recoil. At
higher values of Ec, the simulated drops became unstable
prior to contact, consistent with electrospraying [8,18].
Thus, we conclude that electrospraying may play a role

in the recoil when
ffiffiffiffiffi
Ec

p
> 1:2.

We have found that above a critical electrocapillary
number, a pair of drops aligned with an electric field no
longer coalesce. By varying the drop size and the dielectric
breakdown of the surrounding gas, we are able to evaluate
potential mechanisms to describe this phenomenon. The
results suggest that the transition between coalescence and
recoil is due to the local curvature of the neck region, and
our analytical model predicts this transition well. The
findings are helpful in determining the conditions when
charged drops, or drop pairs in electric fields, will coalesce.
Because the transition appears to depend predominantly on
geometry, a similar phenomenon may occur whenever fluid
cones contact.
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FIG. 4. The data presented in Fig. 2 collapse on to a master
curve when plotted in terms of the electrocapillary number, Ec.
The results from our model (dotted line) predict the transition
between coalescence and recoil reasonably well. The angles we
observe are also consistent with past numerical simulations (five
data points as +) [18].
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