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A dynamic crack tip equation of motion is proposed based on the autonomy of the near-tip nonlinear

zone of scale ‘nl, symmetry principles, causality, and scaling arguments. Causality implies that the

asymptotic linear-elastic fields at time t are determined by the crack path at a retarded time t� �d, where

the delay time �d scales with the ratio of ‘nl and the typical wave speed cnl within the nonlinear zone. The

resulting equation is shown to agree with known results in the quasistatic regime. As a first application in

the fully dynamic regime, an approximate analysis predicts a high-speed oscillatory instability whose

characteristic scale is determined by ‘nl. This prediction is corroborated by experimental results,

demonstrating the emergence of crack tip inertialike effects.
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Introduction.—Fundamental puzzles in the dynamic
fracture of brittle materials remain unresolved mainly
due to the lack of a well-established equation of motion
for a crack’s tip. The study of dynamic fracture has focused
on the central idea of linear-elastic energy flowing into the
crack tip nonlinear and dissipative zone [1,2]. While this
approach is successful in determining the crack growth rate
when its path is known a priori, it is fundamentally defi-
cient in the general and most interesting case in which the
crack’s path is selected dynamically (e.g., instabilities
[2,3]), without being supplemented with a path selection
rule. This long-standing problem hampers the development
of a predictive and complete theory of dynamic fracture.

In this Letter we propose a dynamic crack tip equation of
motion for isotropic materials under plane deformation,
based on rather general physical considerations. A basic
starting point is the concept of the autonomy of the crack
tip nonlinear zone in the canonical theory of fracture,
linear-elastic fracture mechanics (LEFM) [1]. The idea is
that the mechanical state within the small near-tip non-
linear zone of scale ‘nl (‘‘inner problem’’), where LEFM
breaks down, is uniquely determined by the asymptotic
linear-elastic fields surrounding it (‘‘outer problem’’), but
is otherwise independent of the applied loadings and the
geometric configuration (e.g., crack path) in a given prob-
lem. Therefore, the near-tip nonlinear zone is coupled to
the applied loadings and the geometric configuration
through the asymptotic linear-elastic fields and the crack
tip itself evolves according to the dynamics within the
near-tip nonlinear zone. What role then plays the near-
tip nonlinear zone in determining the path selected by a
crack tip?

The main idea of this Letter is that in the presence of a
finite nonlinear near-tip zone, causality implies that the
asymptotic linear-elastic fields at a given time t, which
control the crack tip motion at that time, are determined by
the crack path at a retarded time t� �d, where the delay
time �d scales with the ratio of ‘nl and the typical wave
speed cnl within the nonlinear zone. That is, we propose

that the only essential properties of the near-tip nonlinear
zone are its size ‘nl and its typical wave speed cnl, and that
these appear in a macroscopic continuum theory mainly
through their causal effect. This physical effect is missing
in LEFM since its basic tenet is that the nonlinear near-tip
zone acts as an energy sink, but otherwise ‘nl ! 0 can be
assumed.
The mathematical formulation of these ideas leads to a

simple, continuum level, dynamic equation of motion for a
crack’s tip. This equation agrees with the well-known
‘‘principle of local symmetry’’ [4] in the quasistatic limit,
but is shown to have novel implications in the fully dy-
namic regime. As an example, we perform an approximate
linear stability analysis of rapid mode I cracks. It predicts
the existence of a spontaneous symmetry breaking, high-
speed oscillatory instability whose characteristic scale is
determined by ‘nl. Using the recently developed weakly
nonlinear dynamic fracture theory [5–7] to estimate ‘nl,
this prediction is shown to agree well with recent experi-
ments [3]. These results explicitly demonstrate the impor-
tance of the length scale ‘nl at high propagation speeds, as
well as the emergence of crack tip inertialike effects.
Crack tip dynamics.—The mathematical formulation of

the ideas described above follows in three steps. Consider a
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FIG. 1. A crack with a small nonlinear zone of scale ‘nl. The
angle � the crack makes with respect to the x direction is shown
at 2 times separated by a delay �d.
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crack under plane deformation conditions, whose path is
described by rtipðtÞ and whose tip is surrounded by a small
nonlinear zone ‘nl, see Fig. 1. Note that ‘nl is a dynamic
quantity that depends, for example, on the crack speed,
v � j _rtipj (cf. Figs. 1 in [5,6]). Outside the nonlinear zone,
in an annulus whose width is a few times ‘nlðvÞ, the stress
tensor � is properly described by the linear-elastic univer-
sal, asymptotic fields [1]

�ijðr; ’; tÞ ’
KIðtÞ�I

ijð’; vÞ
ffiffiffiffiffiffiffiffiffi

2�r
p þ KIIðtÞ�II

ijð’; vÞ
ffiffiffiffiffiffiffiffiffi

2�r
p : (1)

Here r ¼ ½ðx� rtipx Þ2 þ ðy� rtipy Þ2�1=2 and ’ ¼
tan�1½ðy� r

tip
y Þ=ðx� r

tip
x Þ�, where (x, y) is a fixed

Cartesian coordinates systems, and i, j run over the polar
coordinates r and ’. KI;II are the mode I and II stress

intensity factors, respectively, and �I;IIð’; vÞ are known
tensorial functions [1]. The concept of autonomy implies
that the near-tip nonlinear zone is coupled to the large
scales only through the stress intensity factors KI;II, which

drive the crack’s tip growth. Therefore, our aim is to derive
an equation of motion based on these quantities.

As a first step in this derivation, we follow closely the

reasoning of [8]. Denote by t̂ and n̂ the tangent and normal
unit vectors at the crack tip, respectively (see Fig. 1) and
consider the discrete symmetry operation Rn that trans-
forms n̂ ! �n̂. Under this symmetry operation the rele-
vant quantities of the asymptotic LEFM fields of Eq. (1)
transform as follows: (i) KI ! KI, (ii) KII ! �KII,
(iii) v ! v. Assuming material isotropy, one can write
down the most general first order equations that are invari-
ant under Rn. The first equation is just a kinematic relation
for the rate of crack tip growth

@tr
tip ¼ vðKIðtÞ; KIIðtÞÞt̂: (2)

The second one describes crack tip rotation

@tt̂ / KIIðtÞn̂; (3)

where the proportionality coefficient is a true scalar.
The second step in the derivation amounts to estimating

the proportionality coefficient in Eq. (3) by dimensional
considerations. The existence of a length scale ‘nl, the
crack speed v and a typical propagation stress intensity
factor �Kc, imply that

@tt̂ ’ � v

‘nl

KIIðtÞ
�Kc

n̂: (4)

�Kc can be related to the fracture energy �ðvÞ, vðKI; KIIÞ is
determined by standard energy balance considerations, i.e.,
the generalized Griffith criterion [1], and the minus sign
ensures that cracks rotate in the proper direction in the
presence of mode II fields. Our scaling approach assumes
that all other material-specific properties of the nonlinear
zone appear as a prefactor of order unity in Eq. (4).
Equation (4) can be rewritten in terms of the angle � that
the unit tangent t̂ makes with the x axis as [9,10]

@t�ðtÞ ’ � v

‘nl

KIIðtÞ
�Kc

: (5)

The third step in the derivation follows from the obser-
vation that �ðtÞ is defined at the crack tip, while KIIðtÞ is
defined a distance ‘nl away from it. Therefore, causality
implies that KII at time t cannot be affected by the crack
faces created in the time interval [t� �d, t] with

�d � ‘nl=cnl: (6)

Here cnl is the typical wave speed within the nonlinear
zone, possibly of the order of the linear-elastic wave speed
cs, but not necessarily so. We note that using a single delay
time �d is certainly a simplification of more complicated
dynamics, but this simplified scaling assumption is ex-
pected to capture the essence of the physics involved.
To formulate this idea precisely, we should express the

physical KII at time t in terms of the mathematicalKII at a
retarded time t� �d, taking into account the fact that the
latter is defined with respect to a coordinates system ro-
tated by �ðt� �dÞ, while the former with respect to a
coordinates system rotated by �ðtÞ, see Fig. 1. KIIðt�
�dÞ is obtained from a pure LEFM problem with a crack
path corresponding to t� �d. Therefore, we have

KIIðtÞ ’ KIðt� �dÞ�I
r’ð’ ¼ �ðtÞ � �ðt� �dÞ; vÞ

þKIIðt� �dÞ�II
r’ð’ ¼ �ðtÞ � �ðt� �dÞ; vÞ; (7)

where �I;II
ij ð’; vÞ were defined in Eq. (1). The effect of the

translation of the tip during the time interval �d may be
non-negligible in general, but for the present purposes we
neglect it. By combining Eqs. (5)–(7), we obtain the pro-
posed dynamic equation of motion for the crack tip.
The quasistatic limit.—It is clear that in the quasistatic

limit, v � cnl, the effect of the delay time �d is negligible
and Eq. (7) predicts KII ¼ KII [use �ðtÞ ¼ �ðt� �dÞ,
�I

r’ð0; vÞ ¼ 0 and �II
r’ð0; vÞ ¼ 1 [1] ]. Moreover, in this

limit the crack tip has enough time to accommodate the
presence of KII and thus (excluding crack initiation under
imposed finite mode-mixity), we expect a predominantly
mode I propagation with �Kc ’ KI. Scaling out v by intro-
ducing the arc-length parametrization s of the crack path,
ds ¼ vdt, Eq. (5) becomes

@s� ’ � 1

‘nl

KII

KI

: (8)

The left-hand side of Eq. (8) has the dimensions of an
inverse length. In the quasistatic limit, where the effect of
the delay time �d is negligible, this length scale cannot be
determined by ‘nl. Therefore, it must be determined by a
macroscopic length scale L that characterizes the sample
geometry, i.e., j@s�j � L�1. The latter result is corrobo-
rated by various experimental observations, see for ex-
ample [11], and is consistent with Eq. (8) if KII=KI is of
the order of ‘nl=L. Therefore, we have
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j@s�j � L�1 ) KII=KI �Oð‘nl=LÞ � 1 ) KII � 0: (9)

The last result is the celebrated ‘‘principle of local sym-
metry’’ [4], which is inevitable from the LEFM perspective
in which ‘nl does not exist. This principle, coupled to the
Griffith criterion [1], provides an excellent quantitative
description of quasistatic crack propagation in brittle ma-
terials [9,12,13]. In fact, in [13] it was shown that Eqs. (8)
and the ‘‘principle of local symmetry’’ generate indistin-
guishable predictions.

High-speed oscillatory instability.—In situations in
which v is of the order of cnl, the delay time �d may be
important, possibly giving rise to novel physical effects.
To explore this possibility we use Eq. (5), with Eqs. (6) and
(7), to study the linear stability of rapid mode I cracks
propagating nearly steadily in a large body of size �L2

with negligible wave interactions with the boundaries.
These conditions can be easily met when an initial seed
crack accelerates quickly to the center of the body [3].
Thus, the crack length l is OðLÞ.

Consider then a configuration C� that results from a
small time-dependent perturbation of the crack path C� ¼
fðx; yÞ: � L=2< x< vt; y ¼ �c ðxÞg. Here c ðxÞ is a
smooth dimensionless function that defines transverse per-
turbations, x is the propagation direction, and y is the
loading direction in which a uniform tensile stress �1 is
applied. The dimensional amplitude � is much smaller than
any other length scale in the problem, ensuring that both
the speed and the path are only slightly perturbed. Note that
we choose l ¼ L=2 at t ¼ 0. By symmetry,KI andKII in

the perturbed configuration have the forms KI ’ Kð0Þ
I þ

Oð�2Þ and KII ’ Kð1Þ
II þOð�3Þ, where the superscripts

denote orders in �. The crack speed v is quadratic in the
stress intensity factors, implying that the mode II contri-
bution to v is negligible to Oð�Þ.

We are interested in situations in which the typical scale
� of transverse perturbations c ðxÞ (soon to be identified
with a wavelength) satisfies � � � � l, L. The stress
intensity factors in the mathematical LEFM problem for
the crack configuration C� were calculated in the general
three-dimensional case in [14] and applied to a two-
dimensional situation in [15]. The result which is relevant
here is [15,16]

Kð1Þ
II ðt� �dÞ ’ Kð0Þ

I ð�ðvÞ � v�ðvÞqIIðvÞÞ�ðt� �dÞ
þ �Bðc Þ: (10)

In this expression, as compared to the one appeared in [15],

we omitted a term of order �1�=
ffiffi

l
p

that is negligible with

respect to �Kð0Þ
I � �1�

ffiffi

l
p

=� (� � � � l), where
tanð�Þ ¼ �@xc ðvtÞ ’ �.

The first term on the right-hand-side (rhs) of Eq. (10) is
local; i.e., it depends on the angle �, and the velocity-
dependent functions that appear in it are

�ðvÞ ¼ @’�
I
r’ð0; vÞ

¼ 8�d�s � ð1þ �2
sÞð�2

d þ �d�s þ 2Þ
RðvÞ ;

�ðvÞ ¼ ½2�dð�s � �dÞð1þ �2
sÞ�=RðvÞ;

(11)

and qIIðvÞ is given explicitly in [15,16]. RðvÞ is the
Rayleigh function [1,15,16], �2

s;d ¼ 1� v2=c2s;d and cs
and cd are the shear and dilatational wave speeds, respec-
tively. Bðc Þ on the rhs of Eq. (10) is a nonlocal linear
functional (involving a spatiotemporal convolution). It
contains a contribution that is negligible compared to the
local term and a contribution that is strictly divergent
[15,16]. The latter was proposed to be regularized in terms
of generalized functions [15] and in that case may be of the
same order of magnitude as the local term [16]. We do not,
however, consider the possibly relevant part of Bðc Þ here
and neglect it in Eq. (10). We note that in the quasistatic
limit Bðc Þ has a destabilizing role in a crack path stability
analysis [9,12], such that its omission here may in fact
promote stability. Below we show that the local terms are
sufficient to induce an instability.
The resulting equation is substituted in the rhs of Eq. (7),

which is then expanded to first order in � (withKI ¼ Kð0Þ
I

independent of t) and the result substituted in the rhs of
Eq. (5). This yields the following approximation:

@t�ðtÞ ’ � v

‘nlðvÞ ½�ðvÞ�ðtÞ � v�ðvÞqIIðvÞ�ðt� �dÞ�;
(12)

where �Kc ’ Kð0Þ
I was used.

In order to study the linear stability of Eq. (12), consider
linear modes �ðtÞ ¼ aei!t, with a� �=� and <ð!Þ ¼
2�v=�. Here � explicitly denotes the wavelength of spatial
perturbations. Substituting the linear modes into Eq. (12),
we obtain

icnl �! ¼ ��v½�ðvÞ � v�ðvÞqIIðvÞe�i �!�; (13)

where �! � !�d is a dimensionless complex frequency and
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FIG. 2 (color online). =ð �!Þ (left) and <ð �!Þ (right) as a func-
tion of v=cs for � ¼ 0:5, cnl ¼ cs, and cd ¼ 2cs [16]. A linear
oscillatory instability is predicted at vc ’ 0:77cs, for which
=ð �!Þ becomes negative with <ð �!Þ � 0. A multivalued function
corresponds to multiple solutions of Eq. (13). The symmetric
<ð �!Þ< 0 branch is not shown.
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� � �dcnl=‘nl is Oð1Þ. The solution �!ðv=csÞ, which de-
pends rather weakly on �, cnl=cs and cd=cs, is shown in
Fig. 2. The major result is that =ð �!Þ becomes negative at a
critical speed vc ’ 0:77cs (for � ¼ 0:5, cd ¼ 2cs, and
cnl ¼ cs; the latter is explicitly derived in [16] for the
material used in [3]) with <ð �!Þ � 0. This implies an
oscillatory instability at vc. At vc we have <ð �!cÞ ’ 1:5,
which implies

� ¼ 2�vc�‘nlðvcÞ
cnl<ð �!cÞ ’ 1:6‘nlðvcÞ: (14)

The last estimate is obtained using the numbers used in
Fig. 2. To conclude, the dynamic crack tip equation of
motion predicts an oscillatory instability at a high critical
speed vc=cs (weakly material dependent), with an initial
wavelength � that scales with the linear size of the near-tip
nonlinear zone ‘nlðvcÞ.

Comparison to experiments.—A high-speed oscillatory
instability in a brittle material was observed experimen-
tally in [3]. The reported critical speed was vc ’ 0:87cs,
which reasonably agrees with our theoretical prediction of
vc ’ 0:77cs, especially in light of the various scaling and
simplifying assumptions adopted above. In order to com-
pare the theoretical prediction for the wavelength to the
measured one, we need an estimate of ‘nlðvcÞ in Eq. (14).
The recently developed weakly nonlinear dynamic fracture
theory [6,7] predicts nonlinear corrections to LEFM,
cf. Eq. (1), on a dynamic scale ‘nlðvÞ ¼ hðvÞGðvÞ=	.
hðvÞ is a material-dependent function, GðvÞ is the LEFM
energy release rate that balances the fracture energy �ðvÞ
[1] and 	 is the shear modulus. Using the numbers re-
ported in Fig. 1 of [6], we estimate ‘nlðvcÞ ’ 4 mm [16],
which upon substitution in Eq. (14) yields � ’ 6:5 mm.

The saturated (nonlinear) wavelength �final, which can-
not be computed within our linearized analysis, is reported
in Fig. 4(b) of [3] and shows a systematic variation with
�1. The initial wavelength �ini (i.e., at the onset of oscil-
lations), however, shows no systematic variation with �1,
attaining the value �ini ¼ 7:5� 2:3 mm [17]. This experi-
mental result is in agreement with our predicted �, which
pertains to the linearized dynamics near the onset of in-
stability. Furthermore, Ref. [3] reports that when the shear
wave speed of the material used in the experiments was
increased by a factor of 3, no appreciable change in the
reduced critical speed vc=cs was observed, in excellent
agreement with the present predictions. Finally, we note
that �� 10�1 mm (� corresponds to Aini in the notation of
[3]), � ’ 7:5 mm and L� 102 mm in the experiments of
[3], are all consistent with the required scales separation
� � � � L. To conclude, the theoretical predictions of
the proposed theory are in agreement with the available
experimental data.

Summary.—We have proposed a dynamic equation of
motion for crack tips propagating in isotropic materials

under plane deformation. A crucial ingredient in the deri-
vation is the idea that a finite near-tip nonlinear zone ‘nl
introduces a delay time �d between the driving stress
intensity factors and the crack tip itself. The resulting
equation agrees with known quasistatic results and predicts
a high-speed oscillatory instability with a characteristic
scale ‘nl, in the fully dynamic regime. The latter result
shows explicitly that the nongeometric, dynamic length
scale ‘nlðvÞ directly influences the crack’s dynamics at
high speeds, cf. [10]. Furthermore, the existence of a fi-
nite ‘nlðvÞ induces crack tip inertialike effects associated
with the delay time �d. All of these effects are missing in
LEFM [1,2].
When the present predictions are supplemented with the

predictions of the recently developed weakly nonlinear
fracture theory for ‘nlðvÞ, a satisfactory agreement with
experimental results for the onset of a high-speed oscilla-
tory instability is obtained. Therefore, extending the
present ideas to three-dimensional situations may open
the way to understanding the side-branching instability,
which also involves a poorly understood length scale [2].
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