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We demonstrate a new type of quantum mechanical correlation where phase modulators at distant

locations, acting on the photons of an entangled pair, interfere to determine the apparent depth of

modulation. When the modulators have the same phase, the modulation depth doubles; when oppositely

phased, the modulators negate each other.
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A nonlinear crystal pumped by a monochromatic laser
may generate time-energy entangled photon pairs through
the process of spontaneous parametric down-conversion
[1]. These pairs may be spatially separated into two chan-
nels and their frequencies and arrival times at distant
detectors measured. If observer A measures the frequency
of her photon, she knows, by energy conservation, the
exact frequency of the photon measured by observer B.
If, instead, she measures the arrival time of her photon, she
can predict the detection time measured by observer B to
within a small window that varies inversely with the pho-
ton bandwidth [2] and may be lengthened by dispersion
[3]. The ability to measure relative time and relative fre-
quency, with accuracies not limited by time-energy uncer-
tainty, is the hallmark of time-energy entanglement [4–6].

An important consequence of time-energy entangle-
ment, first noted by Franson [7,8] and observed by
Brendel et al. [9], is nonlocal cancellation of dispersion.
When the photons of an entangled pair are sent through
different channels having arbitrary dispersions, the disper-
sion in one channel may be negated by dispersion of the
opposite sign in the other channel. This effect results from
quantum interference and has no classical analog. As al-
ways, nonlocal effects do not imply transmission of clas-
sical information.

In this Letter, we report the first observation of a time-
frequency analog to nonlocal dispersion cancellation and
term this effect as nonlocal modulation [10]. Spontaneous
down-conversion is used to generate entangled photons
that each have a spectral width of about 280 cm�1.
Sinusoidal phase modulators, each operating at a frequency
of 30 GHz (1 cm�1), are placed in the two beams, labeled
channel 1 and channel 2 (see Fig. 1). When either beam is
dispersed by a prism or grating and viewed in the fre-
quency domain (i.e., as a function of position), this modu-
lation is completely hidden by the much broader spectral
width of the photon. To observe the modulation, we corre-
late in the frequency (spatial) domain. In the absence of
modulation, a photon detected at a particular position in
channel 1 coincides with a photon of frequency !2 ¼
!p �!1 in channel 2, and the correlation in the frequency

(spatial) domain is therefore a delta function �ð!1 þ!2 �

!pÞ. When synchronously driven modulators are placed in

the signal and idler channels, this correlation becomes a
distribution of discrete sidebands spaced by the modulation
frequency. What is strange and interesting is that these
distant modulators now act cumulatively. For example, if
the two identical modulators have opposite phase, they
negate each other and act as if neither modulator were
present. Conversely, if operated with the same phase,
they produce the same correlation as does a single modu-
lator with twice the modulation depth acting on only one of
the photons.
To avoid confusion, we mention a different type of

quantum interference discovered by Steinberg and col-
leagues [11,12] that bears on Hong-Ou-Mandel interfer-
ometry. Here, because it is not possible to determine which
photon passed through a dispersive medium, there is an
interference of Feynman paths, and even-order dispersive
terms are not seen by the interferometer. Recognizing the
importance of time-frequency duality, Tsang and Psaltis
have suggested the equivalent of the Steinberg interference
in the time domain [13,14]. Since the photons meet on a
single beam splitter in these examples, the interference is a
local effect, and classical analogies have been demon-
strated [15,16].
A schematic of the experiment is shown in Fig. 2. We

pump a 20 mm long, periodically-poled, magnesium
oxide-doped stoichiometric lithium tantalate crystal
(PPSLT, HC Photonics Corp.) with 0.8 W from a 532 nm
cw laser (Coherent Verdi V10). The nonlinear crystal is
phase matched to produce 32 nm bandwidth, degenerate
photon pairs at 1064 nm. All fields are polarized along the

FIG. 1 (color online). Schematic of nonlocal modulation.
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extraordinary axis of the crystal. The generated photons are
filtered from the strong 532 nm pumping beam using a
four-prism setup and are then coupled into a polarization-
maintaining fused-fiber beam splitter which diverts the
photons into channels 1 and 2 with equal probability. The
photons pass through identical sinusoidal phase modula-
tors (EOSPACE) driven at 30 GHz with modulation depths
of about 1.5 rad. The relative phase between the modula-
tors is controlled using a calibrated phase trimmer.
Following the modulators are identical monochromators,
each having a linear dispersion of 210 GHz=mm and a
Gaussian instrument response function with a FWHM
bandwidth of 8.5 GHz. To obtain frequency-domain corre-
lations, we fix the output slit in channel 1 at x1 and scan the
position x2 in channel 2. The photons transmitted through
the monochromator slits are coupled into multimode fibers
and detected with single photon counting modules
(SPCMs, id Quantique id400 and PerkinElmer SPCM-
AQR-16-FC).

The primary experimental results of this work are shown
in Figs. 3 and 4. For each case, we set the monochromator
slit in channel 1 at an arbitrary position x1 near the center
of the generated 32 nm spectrum and leave the position of
this slit fixed thereafter. The slit in channel 2 is scanned
over positions x2, and the coincidence rate of the two
detectors (with gate width T ¼ 1:25 ns) is recorded as a

function of this position. For each position, the rate is
averaged for 20 s.
With the pump frequency defined as!p, and the position

x2 proportional to the frequency !2, we express the co-
incidence rate as a function of relative frequency � �
!2 � ð!p �!1Þ. The scale of the frequency axis is cali-

brated by measuring the sideband spacing of a single-mode
1064 nm laser modulated at 30 GHz, with the zero position
chosen (at the start of the experiment) as the location of the
correlation peak for unmodulated photon pairs.
Figure 3 shows the experimental results without modu-

lation and with modulation in a single channel. In Fig. 3(a),
both modulators are turned off by disconnecting their
30 GHz drive signals. As expected by energy conservation,
a single correlation peak is observed. In Figure 3(b), chan-
nel 1 is phase modulated as exp½i� sinð!mtÞ� with a modu-
lation depth of � ¼ 1:5, and channel 2 is not modulated.
The frequency correlation is now distributed over a set of
sidebands, having Bessel function amplitudes J2nð�Þ, whose
total area is equal to that of Fig. 3(a).
In Fig. 4(a), both modulators are turned on at a modu-

lation depth of � ¼ 1:5, and the cable length is adjusted so
that they have the same phase. They now act cumulatively
(constructively interfere) to produce a set of sidebands
having a Bessel function distribution J2nð2�Þ. The
frequency-domain correlation function of two distant
modulators is therefore the same as that which would be
obtained by correlating an unmodulated photon with a
photon modulated at twice the modulation depth.
In Fig. 4(b), the modulators are run at the same depth as

in the previous paragraph, but now the relative cable length
is adjusted so that the modulators are run in phase oppo-
sition. The modulators now destructively interfere, and no
sidebands are visible. The solid curves in Figs. 3 and 4 are
theoretical fits to the data.
The theory of nonlocal modulation as measured in the

frequency domain has been developed by Harris [10] for
the case of frequency correlation using ideal detectors with
perfect frequency (spatial) resolution. In the following
paragraphs, we develop the theory to allow for finite-
resolution monochromators and detectors having both ar-
bitrary transmission functions and specified temporal gate
widths. Working in the Heisenberg picture, a nonlinear

FIG. 3. Frequency correlation measurements (a) with both
modulators turned off and (b) with the modulator in channel 1
running at a modulation depth of 1.5. Dots are data; curves are
theoretical fits (see text). All data are approximately shot noise
limited.

FIG. 4. As in Fig. 3 but both modulators running (a) with the
same phase and (b) with opposite phase.

FIG. 2 (color online). Experimental setup. �1ðtÞ and �2ðtÞ are
30 GHz sinusoidal modulators synchronously driven with vari-
able relative phase (see text for details).
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crystal of length L is pumped by a monochromatic laser at
frequency !p. A positive-frequency field operator að!; zÞ,
representing entangled photons, evolves inside the crystal
and may be written in terms of an envelope bð!; zÞ which
varies slowly along the propagation direction: að!; zÞ ¼
bð!; zÞ exp½ikð!Þz�. The propagation equations describing
entangled photon generation are

@bð!; zÞ
@z

¼ i�ð!Þbyð!p �!; zÞ exp½i�kð!Þz�;
@byð!; zÞ

@z
¼ �i��ð!Þbð!p �!; zÞ exp½�i�kð!Þz�:

(1)

where �ð!Þ and �kð!Þ are the coupling factor and wave-
vector mismatch, respectively. The solution for the output
field at z ¼ L, expressed in terms of the vacuum field
avacð!Þ at the input of the crystal, is

aoutð!Þ ¼ Að!Þavacð!Þ þ Bð!Þayvacð!p �!Þ; (2)

where, to preserve the commutation relations, the func-
tions Að!Þ and Bð!Þ satisfy jAð!Þj2 � jBð!Þj2 ¼ 1 and
Að!ÞBð!p �!Þ ¼ Bð!ÞAð!p �!Þ.

The time-domain output field operator is related to its
frequency-domain counterpart [Eq. (2)] by the inverse
Fourier transform, aoutðtÞ ¼

R1
�1 aoutð!Þ expð�i!tÞd!,

and is normalized so that the total rate of generated photons

exiting the crystal is Rout ¼ hayoutðtÞaoutðtÞi. The generated
photons are separated into two channels, denoted as chan-
nel 1 and channel 2, using a 50=50 beam splitter. The field
operators at the outputs of the beam splitter are a1ðtÞ ¼
a2ðtÞ ¼ 1ffiffi

2
p aoutðtÞ. The photons are modulated by periodic

phase modulators whose time-domain, Fourier-series
transfer functions arem1ðtÞ ¼

P
kqk expð�ik!mtÞ in chan-

nel 1 and m2ðtÞ ¼
P

lrl expð�il!mtÞ in channel 2, with
Fourier transforms m1ð!Þ ¼ P

kqk�ð!� k!mÞ and
m2ð!Þ ¼ P

lrl�ð!� l!mÞ, respectively. With the � sym-
bol denoting convolution, the frequency-domain modu-
lated fields are ~a1ð!Þ ¼ a1ð!Þ �m1ð!Þ and ~a2ð!Þ ¼
a2ð!Þ �m2ð!Þ. Substituting a1ð!Þ, a2ð!Þ, m1ð!Þ, and
m2ð!Þ into the expressions for ~a1ð!Þ and ~a2ð!Þ yields

~a1ð!Þ ¼ 1
ffiffiffi
2

p X1

k¼�1
qk½Að!� k!mÞavacð!� k!mÞ

þ Bð!� k!mÞayvacð!p �!þ k!mÞ�;

~a2ð!Þ ¼ 1
ffiffiffi
2

p X1

l¼�1
rl½Að!� l!mÞavacð!� l!mÞ

þ Bð!� l!mÞayvacð!p �!þ l!mÞ�:

(3)

The modulated photons are frequency correlated by
passing each through identical monochromators whose
output slits may be translated to select frequencies !1 ¼
�x1 in channel 1 and !2 ¼ �x2 in channel 2, where the
constant � is the linear dispersion of the grating systems.
The monochromators (spectral filters) have field trans-

mission functions H1ð!� �x1Þ and H2ð!� �x2Þ. The
filtered field operators in channels 1 and 2 are ~a1fð!; x1Þ ¼
~a1ð!ÞH1ð!� �x1Þ and ~a2fð!; x2Þ ¼ ~a2ð!ÞH2ð!� �x2Þ,
respectively. The count rates at the outputs of the mono-

chromators are given by R1ðx1Þ ¼ h~ay1fðt; x1Þ~a1fðt; x1Þi and
R2ðx2Þ ¼ h~ay2fðt; x2Þ~a2fðt; x2Þi. These rates are

R1ðx1Þ¼ 1

4�

X1

k¼�1
jqkj2

Z 1

0
jBð!�k!mÞj2

�jH1ð!��x1Þj2d!;

R2ðx2Þ¼ 1

4�

X1

l¼�1
jrlj2

Z 1

0
jBð!� l!mÞj2

�jH2ð!��x2Þj2d!:

(4)

Assuming a gate width T, the coincidence rate for the
two detectors is related to the second-order Glauber corre-

lation function Gð2Þðt1; x1; t2; x2Þ ¼ h~ay2fðt2; x2Þ~ay1fðt1; x1Þ �
~a1fðt1; x1Þ~a2fðt2; x2Þi. With the assumption that the resolu-
tion of the monochromators is high, or equivalently that the
filter widths are small (as compared to the modulation
frequency !m), it can be shown that the correlation func-
tion depends only on the difference of the arrival times � ¼
t2 � t1, and the coincidence rate is

Rcðx1; x2Þ ¼
Z T=2

�T=2
Gð2Þð�; x1; x2Þd�: (5)

Equation (5) may be expanded using Wick’s theorem
and shown to be given by

Rcðx1;x2Þ¼R1ðx1ÞR2ðx2ÞT

þ
Z 1

�1

��������

X1

k¼�1
qkrn�kFkð�;x1;x2Þ

��������

2

d�; (6)

where � ¼ �ðx1 þ x2Þ �!p, n ¼ b�=!m þ 1
2c, and

Fkð�;x1; x2Þ ¼ 1

4�

Z 1

0
Að!� k!mÞBð!p �!þ k!mÞ

�H1ð!��x1ÞH2ð!p �!��x2 þ n!mÞ
� expði!�Þd!: (7)

The first term in Eq. (6) is the result of accidental
coincidences between unpaired photons in a gate width
T. The second term is the coincidence rate between paired
photons and captures the modulation effects described in
this Letter. To obtain Eqs. (4)–(7), we have assumed that
the transmission widths of the monochromators are small
as compared to the modulation frequency and large as
compared to the inverse of the temporal gate width T. In
our experiment these assumptions are satisfied by factors
of 3.5 and 11, respectively.
If we further assume that Að!Þ and Bð!p �!Þ are

constant in the vicinity (�150 GHz in Figs. 3 and 4) of
! ¼ �x1 and are equal to A0 and B0, respectively, then
Eq. (6) becomes
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Rcð�Þ ¼ R1R2T þ cnH
ð2Þðn!m ��Þ; (8)

where Hð2Þð!Þ ¼ jH1ð!Þj2 � jH2ð!Þj2, and

R1 ¼ 1

4�
jB0j2

Z 1

�1
jH1ð!Þj2d!; (8a)

R2 ¼ 1

4�
jB0j2

Z 1

�1
jH2ð!Þj2d!; (8b)

cn ¼ 1

8�

��������
A0B0

X1

k¼�1
qkrn�k

��������

2

: (8c)

The solid curves in Figs. 3 and 4 are theoretical fits to the
data using Eq. (8) shifted horizontally so as to match
center. The Fourier-series coefficients for sinusoidal phase
modulators are Bessel functions with qk ¼ Jkð��1Þ and
rl ¼ Jlð��2Þ, where �1 and �2 are the modulation depths
in channels 1 and 2, respectively, (j�1j ¼ j�2j ¼ 1:5 in our
experiment). We model the monochromator response
functions in channels 1 and 2 as Gaussians with FWHM
bandwidths �: H1ð!Þ ¼ �1 exp½�2 lnð2Þ!2=�2� and
H2ð!Þ ¼ �2 exp½�2 lnð2Þ!2=�2�. (The monochromator
in channel 1 is the mirror image of the one in channel 2
which has a measured FWHM bandwidth of 8.5 GHz.) The
transfer functions include fitting parameters �1 and �2

used in Figs. 3 and 4 to account for transmission losses
and the difference in detection efficiencies of the photon
counters.

To obtain the constants A0 and B0, for each case in
Figs. 3 and 4, we measure the average value of R2 and
use Eq. (8b) to calculate jB0j. We obtain jA0j from the
commutator-preserving condition jA0j2 � jB0j2 ¼ 1. For
all curves, the fitting parameters are taken as �2

1 ¼ 1:20�
10�2 and �2

2 ¼ 5:59� 10�4. These values are in good
agreement with loss measurements and estimates of the
photon counter detection efficiency, where we note that the
id400 detector in channel 1 has a detection efficiency an
order of magnitude larger than the SPCM-AQR-16-FC
detector in channel 2.

In summary, this work reports the first observation of a
quantum effect termed as nonlocal modulation. We have
experimentally shown how distant modulators, when cor-
related in the frequency domain, may interfere construc-

tively or destructively. Though this work has dealt with the
effects of synchronously driven sinusoidal modulators, a
more general statement for nonlocal modulation is that
phase modulation in channel 1 of the form exp½i�1ðtÞ�
acts cumulatively with modulation exp½i�2ðtÞ� in channel 2
so as to produce a frequency domain correlation propor-
tional to the amplitude square of the Fourier transform of
expfi½�1ðtÞ þ�2ðtÞ�g. For this relation to hold, it is re-
quired that �1ðtÞ and �2ðtÞ both vary slowly as compared
to the temporal width of the biphoton wave function.
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