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We show that low-energy inelastic cross sections can decrease as well as increase in the vicinity of a

zero-energy Feshbach resonance. When an external field is used to tune across such a resonance, the real

and imaginary parts of the scattering length show asymmetric oscillations with both peaks and troughs. In

favorable circumstances, the inelastic collision rate can be reduced to almost zero. This may be important

for efforts to achieve evaporative and sympathetic cooling for molecules.
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Cold and ultracold molecules have fascinating proper-
ties that will find applications in many areas of physics,
ranging from precision measurement to quantum comput-
ing [1]. Ultracold molecules offer new possibilities for
quantum simulations and quantum control, while quantum
gases of ultracold polar molecules are expected to exhibit a
wide range of new quantum phases.

Cold and ultracold molecules must always be confined
in traps, and trap losses are crucial. In particular, collisional
stability is very important. Magnetic and electrostatic traps
can trap molecules only when they are in low-field-seeking
states, and such states are never the lowest in the applied
field. Any inelastic collision that transfers internal energy
into relative translational motion causes either heating or
trap loss. It is thus very important to understand inelastic
collisions and to find ways to minimize them. The purpose
of the present Letter is to show that inelastic collision rates
can sometimes be dramatically reduced by tuning close to
a Feshbach resonance [2] with an applied electric or mag-
netic field.

It has been possible for about 5 years to create molecules
in highly vibrationally excited states in ultracold atomic
gases [3], both by photoassociation [4] and by magneto-
association [5]. A major goal was achieved in 2008 when
Ni et al. [6] succeeded in transfering KRb molecules
formed by magnetoassociation at T ¼ 350 nK into their
ground rovibrational state by stimulated Raman adiabatic
passage (STIRAP). Experiments on collisional trap loss are
already under way [7]. Danzl et al. [8,9] and Lang et al.
[10] have carried out analogous experiments on Cs2 and
triplet Rb2, respectively. There have also been considerable
successes in direct photoassociation to produce low-lying
states [11–14].

Methods based on photoassociation and magnetoassoci-
ation are limited to molecules formed from atoms that can
be laser cooled, such as the alkali metals. However, a wider
range of molecules can be cooled directly from high tem-
perature to the millikelvin regime, using methods such as

buffer-gas cooling [15] and Stark deceleration [16]. Polar
molecules such as ND3 and OH can be held in electrostatic
or alternating current traps [17,18], while paramagnetic
molecules such as CaH, O2, NH, and OH can be held in
magnetic traps. However, at present the lowest tempera-
tures that can be achieved in static traps are around 10 mK,
and there are a variety of proposals for ways to cool the
molecules further, including evaporative cooling, sympa-
thetic cooling, and cavity-assisted cooling [19–21].
Magnetic fields have important effects on the interac-

tions and collisions of paramagnetic molecules [22–24]. In
a previous work [25], we explored the use of Feshbach
resonances to control molecular collisions with applied
fields. For the prototype system Heþ NH (3��), we lo-
cated magnetic fields at which bound states cross open-
channel thresholds and then characterized the resulting
low-energy Feshbach resonances as a function of magnetic
field. For a resonance at which a bound state crosses the
lowest open-channel threshold, the real scattering length a
behaves in the same way as in the atomic case [26] and
exhibits a pole as a function of magnetic field B. However,
for resonances in which a state crosses a higher threshold,
we observed quite different behavior. In this case, inelastic
scattering can occur and the scattering length is complex.
The complex scattering length aðBÞ ¼ �ðBÞ � i�ðBÞ was
found to follow the formula [25]

aðBÞ ¼ abg þ ares
2ðB� BresÞ=�inel

B þ i
; (1)

where abg is a slowly varying background term and Bres

and �inel
B are the position and width of the resonance. The

resonant scattering length ares characterizes the strength of
the resonance. The elastic and total inelastic cross sections
are given approximately by

�elðBÞ � 4�jaðBÞj2 and �tot
inelðBÞ �

4��ðBÞ
k0

: (2)
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The inelastic scattering in Heþ NH is very weak except
near resonance. Under these circumstances,�elðBÞ shows a
symmetric oscillation at resonance and �tot

inelðBÞ shows a

simple peak [25]. This corresponds to a real value of ares.
However, a more complete derivation [27] subsequently
showed that, when the background scattering is signifi-
cantly inelastic, it is possible for ares to be complex.
When this occurs, inelastic cross sections show troughs
as well as peaks near resonance. This is potentially of great
importance, since inelastic collisions generally provide
trap loss mechanisms and since strong inelastic processes
can prevent evaporative or sympathetic cooling.

In this Letter, we consider a more strongly coupled
system, with significant inelastic scattering, in order to
demonstrate the dramatic reductions in inelasticity that
can occur near Feshbach resonances. The system we
have chosen is 4Heþ 16O2 (3��

g ), for which a reliable

potential energy surface has been calculated by
Groenenboom and Struniewicz [28]. The 16O2 molecule

has a ground state with rotational quantum number n ¼ 1
because the 16O nucleus is a boson with nuclear spin I ¼ 0.
The bound-state Schrödinger equation for 4Heþ 16O2 is

solved by propagating coupled differential equations using
the BOUND package [29,30], as modified to handle mag-
netic fields [25]. The calculations are carried out in a
completely decoupled basis set [23], jnmnijsmsijLmLi,
where s ¼ 1 is the electron spin of O2 and L is the end-
over-end rotational angular momentum of He and the
molecule. All of the m quantum numbers represent
space-fixed projections on the axis defined by the magnetic
field. The only good quantum numbers are the parity
ð�1ÞnþLþ1 and the total projection quantum number
Mtot ¼ mn þms þmL. At energies above the lowest
threshold, BOUND locates both physical quasibound states
and artificial states that result from box quantizing the
continuum for open channels. However, it is straightfor-
ward to identify the physical states by inspecting the
dependence of the eigenvalues on the outer limit of the
propagation.

Figure 1 shows the bound and quasibound states of the
4He-16O2 complex near the n ¼ 1 thresholds as a function

of magnetic field B, with artificial levels removed, together
with the thresholds for dissociation to form Heþ O2. The
thresholds are characterized at zero field by O2 quantum
numbers n, s, and j, with s ¼ 1 and j ¼ 0, 1, 2 for n ¼ 1;
each one splits into 2jþ 1 components labeled by mj at

nonzero magnetic field. He-O2 is a weakly anisotropic
system, so n and s remain nearly good quantum numbers
and the levels of the complex are characterized by addi-
tional quantum numbers L and J, where the total angular
momentum J is the resultant of j and L. At zero field, each
(n, j, and L) level splits intominð2jþ 1; 2Lþ 1Þ sublevels
with different values of J. When a magnetic field is ap-
plied, each sublevel splits into 2J þ 1 components with
different values of Mtot. The J quantum number remains a
useful label for magnetic fields up to about 1000 G, but

above that, the levels of different J are strongly mixed. By
about 5000 G, the levels have separated into groups that
may be labeled with an approximate quantum number ~mj

that takes values from �j to þj.
Crossings between quasibound states and thresholds will

produce zero-energy Feshbach resonances in s-wave scat-
tering if an L ¼ 0 scattering channel is permitted by the
constraints on parity andMtot. This occurs only for thresh-
olds corresponding tomj ¼ Mtot as shown by the circles in

Fig. 1. In the present work, we are particularly interested in
resonances that occur at excited thresholds, where inelastic
scattering may occur.
Once the crossing points have been located in Fig. 1, we

carry out scattering calculations, holding the kinetic energy
fixed at a small value while sweeping the magnetic field
across the resonance. This is done using the MOLSCAT

FIG. 1 (color online). The pattern of levels from bound-state
calculations on 4He-16O2 near the n ¼ 1 thresholds, with artifi-

cial levels removed, as a function of magnetic field B. The
calculations are for even parity, Mtot ¼ �6 to þ6. The 16O2

threshold energies are shown as solid black lines. The circles
show crossings between bound states and thresholds with mj ¼
Mtot that produce zero-energy Feshbach resonances in s-wave
scattering.
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package [31], as modified to handle collisions in magnetic
fields [25].

Typical resonance profiles for 4Heþ O2 are shown in
Fig. 2 for the resonance labeled 1 in Fig. 1 at collision
energies E ¼ 1 �K, 100 �K, and 10 mK. At all three
energies, the total inelastic cross section (summed over
outgoing partial waves L0) drops by almost a factor of
1000 from its background value at a field just below Bres.
At higher energies, the resonance is shifted slightly, but the
resonant suppression is just as strong. The resonant con-

tribution to the inelastic cross section follows the E�1=2

Wigner threshold law [32] only at very low collision en-
ergies (below 100 �K). At higher energies, it actually
decreases faster than predicted by the threshold law and
the elastic cross section also decreases. The p-wave con-
tribution to the inelastic cross section is nonresonant and

increases approximately as Eþ1=2 with energy while the
s-wave contribution decreases. For the resonance in Fig. 2,

its value is about 1 �A2 at 10 mK so that p-wave scattering
will dampen the suppression of inelastic scattering at tem-
peratures above this.

The resonances for Heþ O2 are quite wide, with j�Bj ¼
250–500 G. The resonance in Fig. 2 provides substantial
suppression of inelastic cross sections across a range of at
least 100 G. This would be sufficient to provide a working
energy range of about 10 mK for magnetically trapped
states of a molecule in a 3� electronic state. The broad
resonances observed here contrast with those previously
characterized for He-NH, which had j�Bj< 10�2 G [25].
The difference arises in this case because the n ¼ 1 closed
channels involved for O2 are directly coupled to the inelas-
tic channel(s) by the potential anisotropy, whereas the n ¼
0 closed channels involved for NH were only indirectly
coupled to the open channels. However, broad resonances
are likely to be common in molecule-molecule systems and
indeed in atom-molecule systems involving atoms heavier

than He because the couplings due to potential anisotropy
are much stronger in heavier systems [33,34].
The asymmetric line shapes observed here are analo-

gous to Fano line shapes [35] in bound-free absorption
spectra. Fano considered the interference between the
bound and continuum contributions to a transition matrix
element near resonance. He showed that the bound-state
contribution rises from zero to a peak at resonance while
the continuum contribution drops from its background
value to zero and changes sign at resonance. When there
is only a single continuum channel, there is always a point
near resonance where the bound and continuum contribu-
tions cancel completely. However, when there are N out-
going channels, there is one particular linear combination
of them that is coupled to the bound state and N � 1
orthogonal linear combinations that are not [35]. The
resonance suppresses inelastic scattering into the former
but not into the latter, so the cross section does not drop to
zero.
For low-energy resonant scattering in the presence of

inelastic channels, the partial width for the incoming (elas-
tic) channel is proportional to the incoming wave vector k0,
while the partial widths for the inelastic channels are
essentially independent of k0 [27]. At low energies, we
may therefore consider the bound state to be coupled only
to the outgoing (inelastic) channels and apply Fano theory
directly to the inelastic cross sections.
Even for 16O2 molecules at the j ¼ 2, mj ¼ �2 thresh-

old, which can relax only to form j ¼ 0, mj ¼ 0, there are

outgoing channels with several values of L0. For s-wave
scattering (L ¼ 0), L0 must be at least �mj and must be

even to conserve parity. The kinetic energy release of 1.9 K
at B ¼ 9750 G is above the centrifugal barrier for L ¼ 2
(0.4 K) but below that for L ¼ 4 (2.4 K). Because of this,
the L ¼ 2 channel dominates the inelastic scattering away
from resonance and is the outgoing channel most strongly
coupled to the bound state. The inelastic cross section
therefore shows a deep minimum, though there is still a
little background inelastic scattering that is not suppressed
by the resonance.
The situation is somewhat different for resonances at the

j ¼ 2, mj ¼ �1 threshold, such as that shown in Fig. 3

(resonance 2 in Fig. 1). In this case, the resonance sup-
presses the total inelastic cross section by less than a factor
of 10 from its background value. At 11660 G, the kinetic
energy release is 0.55 K for relaxation to the j ¼ 2, mj ¼
�2 (upper) threshold and 2.3 K for relaxation to the j ¼ 0,
mj ¼ 0 (lower) threshold. The L ¼ 2 outgoing channels at

both inelastic thresholds contribute significantly to the
inelastic scattering far from resonance. However, the reso-
nant bound state (with mj ¼ þ2) is coupled much more

strongly to j ¼ 0, mj ¼ 0 channels than to j ¼ 2, mj ¼
�2 channels. The resonance therefore suppresses inelastic
scattering into the lower channel, but there is significant
background inelastic scattering into the upper channel that
is unaffected by the resonance.
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FIG. 2 (color online). Elastic (red) and total inelastic (green)
cross sections for resonance 1 in Heþ O2 as a function of
magnetic field at collision energies of 10�6 K (solid lines),
10�4 K (dashed lines), and 10�2 K (dotted lines).
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The kinetic energy release needed to surmount centrifu-
gal barriers depends on the reduced mass and will be
smaller in heavier systems than for Heþ O2, as will the
temperature range in which s-wave scattering dominates.
However, much lower temperatures are already being
achieved in current experiments [6,9].

We conclude that inelastic cross sections may some-
times be reduced dramatically by tuning near a Feshbach
resonance. This may be very important for attempts to
produce ultracold molecules by evaporative or sympathetic
cooling: applying a suitable bias field could suppress in-
elastic collisions near the bottom of a trap and allow
cooling in cases where it would otherwise be prevented
by inelastic losses. The reduction may occur for any atom
or molecule in an internally excited state, but it is most
dramatic when there is a single outgoing channel that
dominates the inelastic scattering and is strongly coupled
to the resonant channel. A common example of this will be
systems in which all but one of the outgoing channels are
suppressed by centrifugal barriers.
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Science 321, 1062 (2008).

[9] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart,
J. Aldegunde, J.M. Hutson, and H.-C. Nägerl,
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FIG. 3 (color online). Elastic (red) and total inelastic (green)
cross sections for resonance 2 in Heþ O2 as a function of
magnetic field at collision energy 10�6 K.
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