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We propose a second renormalization group method to handle the tensor-network states or models. This

method dramatically reduces the truncation error of the tensor renormalization group. It allows physical

quantities of classical tensor-network models or tensor-network ground states of quantum systems to be

accurately and efficiently determined.
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One of the biggest challenges in physics is to develop
accurate and efficient methods that can solve many cur-
rently intractable problems in correlated quantum or sta-
tistical systems. While the density matrix renormalizatoin
group (DMRG) has proven to be a powerful numerical tool
for the study of strongly correlated systems in one dimen-
sion, applications to two or higher dimensions are ham-
pered by accuracy. Quantum Monte Carlo simulations, on
the other hand, are not limited by the dimensionality, but
are hamstrung by the minus sign problem for fermionic or
frustrated spin systems. To resolve these difficulties, in-
creasing interest has recently been devoted to the study of
the tensor-network states or models [1–5].

In statistical physics, all classical lattice models with
local interactions, such as the Ising model, can be written
as tensor-network models. To investigate these tensor-
network models, Levin and Nave proposed a tensor renor-
malization group (TRG) method [3]. They showed that the
magnetization obtained with this method for the Ising
model on triangular lattice agrees accurately with the exact
result.

In a quantum system, a tensor-network state [1,2]
presents a higher-dimensional extension of the one-
dimensional matrix-product state [6] in the study of
DMRG [7]. It captures accurately the nature of short-range
entanglement of a quantum system and is believed to
be a good approximation of the ground state. In a recent
work, we have developed a projection method to deter-
mine accurately and systematically the tensor-network
ground state wave function for an interacting quantum
Hamiltonian [4]. In the evaluation of its expectation values,
we adopted the TRG method of Levin and Nave [3]. From
the calculation, we found that the TRG can indeed produce
qualitatively correct results. However, the truncation error
in the TRG iteration grows rapidly with the bond dimen-
sion of local tensors (D). This leads to a big error in the
calculation of expectation values. In particular, the ground
state energy and other physical quantities oscillate strongly
with increasing D, indicating that the truncation error of
the TRG is too big to produce a converging result in the
large D limit.

In this Letter, we propose a novel renormalization group
scheme to solve the above problem. In the TRG method of
Levin and Nave, the singular-value spectra of an M matrix
defined by a product of two neighboring local tensors is
renormalized in the truncation of basis space. This can be
thought as the first renormalization to the tensor-network
state. However, this renormalization does not consider the
influence of other tensors (denoted as the environment
hereafter) to the M matrix. It presents a local rather than
global optimization of the truncation space. The role of
environment is to modify the truncation space by reweigh-
ing the singular-value spectra of M. We will introduce a
systematical method to study this renormalization effect of
environment. This method, as will be demonstrated below,
improves significantly the accuracy of results. We will call
it the second renormalization group method of tensor-
network states, abbreviated as SRG.
To understand how our method works, let us first con-

sider how the tensor-network state is renormalized in the
TRG [3]. We start with a classical tensor-network model on
honeycomb lattices whose partition function is defined by

Z ¼ Tr
Y

i2b;j2w

Ta
xiyiziT

b
xjyjzj ; (1)

where b (w) stands for the black (white) sublattice shown
in Fig. 1. Ta

xiyizi and T
b
xjyjzj are the two tensors of rank three

defined on the black and white sublattices, respectively.
The subscripts xi, yi, and zi are the integer bond indices of
dimensionD defined on the three bonds emitted from site i
along the x, y, and z directions, respectively. A bond links
two sites. The two bond indices defined from the two end
points take the same values.
The TRG starts by rewiring a pair of tensors with

singular-value decomposition as shown in Fig. 2. To do
this, let us contract a pair of neighboring tensors to form a
N � N matrix M defined by

Mij;kl ¼
X

m

Ta
mjkT

b
mli; (2)

where N ¼ D2. The singular-value decomposition is then
applied to decouple this matrix into the following form
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Mij;kl ¼
XN

m¼1

Uij;m�mVkl;m; (3)

where U and V are two N � N unitary matrices. � ¼
ð�1; . . . ;�NÞ is a semipositive diagonal matrix arranged
in descending order, �1 � �2 � � � � � �N .

The next step is to truncate the basis space and retain
Dcut (�N) largest singular values and the corresponding
vectors. M is then replaced by an approximate expression

Mij;kl �
XDcut

m¼1

Uij;m�mVkl;m: (4)

The corresponding truncation error is defined by

"ð�Þ ¼
P

m>Dcut
�m

Tr�
: (5)

Equation (4) minimizes the truncation error of M.
However, it does not consider the influence of the rest of
lattice (i.e., environment) toM. In real systems, what needs
to be minimized is actually the truncation error of the
partition function Z. This means that the truncation error
is only locally minimized by the TRG [3]. For the spin-1=2
Ising model with D ¼ 2, the truncation error is generally
very small except in the vicinity of the critical point.
However, if the bond degrees of freedomD becomes large,
the truncation error increases dramatically. This may cause
a big error in the final result.

To understand this more clearly, let us rewrite the par-
tition function (1) as

Z ¼ TrMMe ¼ X

ij;kl

Mij;klM
e
kl;ij; (6)

where Me is the contribution from the environment lattice
defined in Fig. 3. Me is defined by tracing out all bond
indices in the environment lattice excluding those connect-
ing with the two vertices on which M is defined. This
formula indicates that to reduce the error in Z, one needs
to minimize the truncation error of MMe, rather than that
of M.
Figure 3(a) shows the configuration of an environment

lattice. In the rewiring and truncation of M matrix, there is
no need to evaluate Me rigorously. We propose to evaluate
Me iteratively using the TRGmethod. The configuration of
the environment after one TRG iteration before decimation
is shown in Fig. 3(b). By contracting all the internal bonds
connecting small triangles, a decimated environment lat-
tice, whose configuration is similar to Fig. 3(a), is obtained.
This iteration can be repeated until Me is converged.
Generally we find that the values of Me such obtained
are sufficiently accurate after 5 to 10 iterations, the corre-

ij

k l

Ta Tb

ij

k l

U

V

M

ij

k l

(a) (b)
SVD

FIG. 2. (a) To form the M matrix by tracing out the common
bond indices of tensors Ta and Tb. (b) To perform the singular-
value decomposition defined by Eq. (3).

ij

k l
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ij

k l

( )b

FIG. 3. Configuration of an environment lattice (a) and that
after one TRG iteration (b).

FIG. 1. Schematic representation of (a) the partition function
of a classical system defined by Eq. (1) and (b) the tensor-
network ground state wave function of a quantum system defined
by Eq. (14) on honeycomb lattices. At each vertex, three bonds
are emitted along x, y, and z directions, respectively.
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sponding numbers of environment lattice sites are 2�
35 � 2 and 2� 310 � 2, respectively.

In the minimization of the truncation error ofMMe, it is
better to treat the row ij and column kl indices of M as
symmetrically as possible. To do this, let us first do a
singular-value decomposition for Me

Me ¼ Ue�eV
y
e ; (7)

where Ue and Ve are two unitary matrices and �e is a
semipositive diagonal matrix. Then we can define a new
matrix

~M ¼ �1=2
e Vy

e MUe�
1=2
e ; (8)

and show that

Z ¼ Tr ~M: (9)

Thus to minimize the error in Z, one needs only to mini-
mize the truncation error of ~M.

Now let us take a singular-value decomposition for ~M

~M ¼ ~U ~� ~Vy: (10)

Again, ~U and ~V are two unitary matrices. ~� is a semi-
positive diagonal matrix whose diagonal matrix elements
are arranged in descending order. Then we can truncate the
basis space by keeping the Dcut largest singular values of
~�. By substituting the approximate ~M back into Eq. (8),
one can find that

Mij;kl �
XDcut

n¼1

San;ijS
b
n;kl; (11)

where

Sa ¼ ~�1=2 ~Uy��1=2
e Vy

e ; (12)

Sb ¼ ~�1=2 ~Vy��1=2
e Uy

e (13)

are the two tensors defined in the rewired lattice. Finally
one can follow the steps introduced in Ref. [3] to update
tensors Ta and Tb in a squeezed lattice by taking the coarse
grain decimation of Sa and Sb. This completes a full cycle
of SRG iteration. By repeating this procedure, one can
finally obtain the value of partition function in the thermo-
dynamic limit.

We have applied this SRG method to the spin-1=2 Ising
model on triangular lattices. Figure 4 compares the relative
error of the free energy and the specific heat obtained using
the SRG with those using the TRG. The number of sites is
330 and Dcut ¼ 24. In the SRG calculation of Me, 10
iterations are used. For the free energy, we find that the
SRG can improve the accuracy for more than 5 orders of
magnitude far away from the critical point, and more than
2 orders of magnitude at the critical point. The critical
temperature Tc can be determined from the peak position
of the specific heat. As shown in the inset of Fig. 4, the

value of Tc obtained with SRG is more than 2 orders of
magnitude more accurate than that obtained with TRG.
Furthermore, from our calculation, we find that the im-
provement of the SRG over the TRG becomes more and
more pronounced with increasing Dcut.
It is straightforward to extend the SRG to study ground

state properties of a quantum system with tensor-network
wave function. The two-dimensional tensor-network wave
function can be accurately determined using the projection
approach we recently proposed [4]. After that one can use
the SRG to evaluate the expectation values of the tensor-
network state [8].
To demonstrate how the SRG can improve the accuracy

of the expectation values of tensor-network states, we have
applied the SRG to the Heisenberg model on honeycomb
lattices. The ground state wave function is assumed to have
the following tensor-network form:

j�i ¼ Tr
Y

i2b;j2w

�xi�yi�ziAxiyizi½�i�Bxjyjzi½�j�j�i�ji:

(14)

A schematic representation of this tensor-network state on
the honeycomb lattice is shown in Fig. 1(b). �i is the

FIG. 4 (color online). Comparison of the relative error of the
free energy �fðTÞ ¼ jfðTÞ � fexðTÞj=fexðTÞ (upper panel) and
the specific heat (lower panel) as functions of temperature for the
Ising model on triangular lattices obtained using TRG (red or
gray) and SRG. fexðTÞ is the exact result calculated using the
formula given in Ref. [14]. The dotted line in the inset shows the
exact critical temperatures Tc ¼ 4= ln3.
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eigenvalue of spin operator Siz. Axiyizi½�i� and Bxjyjzj½�j�
are the two three-indexed tensors defined on the black and
white sublattices, respectively. ��i

(� ¼ x, y, z) is a posi-

tive diagonal matrix of dimension D. The trace is to sum
over all spin configurations and over all bond indices. The
tensor corresponding to Ta in Eq. (1) is now defined by

Ta
xx0;yy0;zz0 ¼

X

�

ð�x�y�zÞ1=2Axyz½��Ax0y0z0 ½��ð�x0�y0�z0 Þ1=2:

(15)

The bond dimension of this tensor is D2.
Figure 5 compares the SRG with the TRG results for the

ground state energy and the staggered magnetization for
the Heisenberg model on the honeycomb lattice. The num-
ber of lattice sites is 2� 318. The truncation error in the
SRG calculation is less than "0 � 10�3 andDcut ¼ D2. We
have used the second-order Trotter-Suzuki decomposition
formula to improve the accuracy in the calculation of the
ground state wave functions using the projection approach
introduced in Ref. [4]. The staggered magnetization is
evaluated directly from the expectation value of the stag-
gered spin operator in the ground state in the limit the
external staggered magnetic field approaching zero. This
avoids the error in the determination of the staggered
magnetization from the numerical derivative of the ground
state energy at finite staggered magnetic field, as was done
in Ref. [4]. Unlike the TRG results, we find that the SRG
results vary monotonically with D and tend to converge
quickly to the infinite D limit.

For D ¼ 8, the SRG results of the ground energy and
the staggered magnetization per site are, respectively,
�0:5445 and 0.2142, consistent with the results obtained
by other methods [9–11]. The accuracy of these results are
still not comparable with those obtained by the DMRG
[12] and the quantum Monte Carlo method [13]. By con-
sidering the symmetry of the Hamiltonian, the tensor-
network states with a bond dimension as large as D� 20
can in principle be handled. In that case, the SRG results
will be further improved.

In conclusion, we have introduced a SRG method to
improve significantly the accuracy in the TRG calculation.
This method differs from the TRG by taking into account
the renormalization effect of environment to theM matrix,
similar to the DMRG contrasting the conventional block
renormalization group method. For the classical Ising
model, the relative error of the free energy as well as other
quantities is reduced by more than 2 to 5 orders of magni-
tude when Dcut ¼ 24 and can be further reduced by in-
creasing Dcut, in comparison with the TRG. The SRG, in
combination with the projection method introduced in
Ref. [4], provides an accurate and efficient tool for explor-
ing tensor-network ground states of quantum lattice mod-
els. It will play a more and more important role in the study
of highly correlated systems. The physical idea present in
this work can be also generalized to apply to other physical
problems where the system can be divided into two parts
and the interplay between them is important. In particular,
if one wants to generalize the projection method proposed
in Ref. [4] to evaluate time-dependent or thermodynamic
quantities, then the SRG correction to the wave function
should be considered to minimize the accumulated Trotter
and truncation errors in the iteration.
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FIG. 5 (color online). (a) The ground state energy per site E0

and (b) the staggered magnetization Mstag as functions of the

bond degrees of freedom D on honeycomb lattices.
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