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We derive several entanglement criteria for bipartite continuous variable quantum systems based on the

Shannon entropy. These criteria are more sensitive than those involving only second-order moments, and

are equivalent to well-known variance product tests in the case of Gaussian states. Furthermore, they

involve only a pair of quadrature measurements, and will thus prove extremely useful in the experimental

identification of entanglement.
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Quantum entanglement is the property that differentiates
quantum-mechanical systems from classical ones. As such,
the detection and characterization of quantum entangle-
ment is one of the prominent goals in quantum informa-
tion. In the discrete variable case, many detection schemes
for entanglement have been proposed (see [1] for a review).
In the continuous variable (CV) case, detection of entan-
glement is more challenging due to the complicated Hilbert
space structure, and many tests only detect entanglement
that appears in the second-order moments [2–7], which is
completely adequate for the case of Gaussian states.
However, non-Gaussian states and processes have been
shown to not just enhance certain quantum information
protocols such as teleportation [8,9], but in fact be neces-
sary for certain tasks, such as universal quantum comput-
ing [10,11] and entanglement distillation [12,13]. Towards
the detection of CVentanglement in general, Shchukin and
Vogel have derived an infinite hierarchy of conditions for
positive partial transpose involving higher-order moments
[14]. Although powerful, these conditions may not always
be experimentally convenient [15].

Here we derive several entropic entanglement criteria
for CVs. In contrast to previous work based on quantum-
mechanical generalizations of entropy functions [16–19],
our criteria involve the Shannon entropy of probability
distributions of a pair of complementary quadrature mea-
surements. We will show that these conditions detect en-
tanglement in many states that any second-order test will
not. A first set of inequalities is most sensitive, but is valid
only for pure states. Inspired by previous work in discrete
variables [20], we use the entropic uncertainty relation
attained in [21] for probability distributions of complemen-
tary quantum observables, to derive a second set of in-
equalities. These have the distinct advantage that they can
be extended to include mixed bipartite CV states. These
inequalities are more sensitive than the usual criteria based
on second-order moments [2–5], and are equivalent to a
well-known variance product criteria [4] in the case of
bipartite Gaussian states. At the same time they are no
more experimentally demanding than the widely adopted
tests [3–5].

As in other CV inseparability criteria [3–5], we consider
the global operators

r� ¼ r1 � r2 and s� ¼ s1 � s2; (1)

where rj ¼ cos�jxj þ sin�jpj, sj ¼ cos�jpj � sin�jxj,
and xj and pj are the usual canonical variables satisfying

½xj; pi� ¼ i�ij, and j, i ¼ 1, 2 refers to each subsystem of a

bipartite state. Note also that the operators rj and sj satisfy

½rj; si� ¼ i�ij. The entropy associated to a measurement of

r is given by the Shannon entropy

H½R� ¼ �
Z

drRðrÞ lnRðrÞ; (2)

where RðrÞ is the probability distribution associated to the
measurement of r, and similarly for H½S�.
We will derive inseparability criteria of the form

H½R�� þH½S�� � c; (3)

where R� and S� are the probability distributions associ-
ated to measurement of r� and s�, respectively, and c > 0
is a real constant. Any separable state obeys inequality (3),
while entangled states may not. For example, the left side
of Eq. (3) vanishes for the common eigenstates of r� and
sþ or rþ and s�, which correspond EPR-like states (note
that ½rþ; s�� ¼ ½r�; sþ� ¼ 0).
Let us first derive an inequality for the case of pure

states. We will then extend our results to include mixed
states. A separable pure state can be written in the form
jc 1i � jc 2i, and has a corresponding wave function
�ðr1; r2Þ ¼ c 1ðr1Þc 2ðr2Þ. Using Eq. (1) and changing
variables gives

�ðrþ; r�Þ ¼ 1ffiffiffi
2

p c 1

�
rþ þ r�

2

�
c 2

�
rþ � r�

2

�
: (4)

The probability distribution associated to the measurement
of r� is given by
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R� ¼ 1

2

Z
dr�R1

�
rþ þ r�

2

�
R2

�
rþ � r�

2

�

¼
Z

drR1ðrÞR2ð�r� r�Þ ¼ R1 � Rð�Þ
2 ; (5)

where RjðrÞ ¼ jc jðrÞj2, the symbol ‘‘�’’ denotes convolu-
tion and RðþÞ

2 � R2ðrÞ, Rð�Þ
2 � R2ð�rÞ. Using the entropy

power inequality [22,23]

expð2H½A � B�Þ � expð2H½A�Þ þ expð2H½B�Þ; (6)

and also the fact that the Shannon entropy is invariant
under reflections [22], we have

H½R�� � 1
2 lnfexpð2H½R1�Þ þ expð2H½R2�Þg: (7)

We arrive at an equivalent inequality for H½S��:
H½S�� � 1

2 lnfexpð2H½S1�Þ þ expð2H½S2�Þg: (8)

Combining (7) and (8), we have

H½R�� þH½S�� � 1

2
ln

� X
i;j¼1;2

eð2H½Ri�þ2H½Sj�Þ
�
: (9)

Equation (9) gives two inequalities that are satisfied by
separable pure states. Violation of either inequality (9) is
then a sufficient condition for entanglement.

We will now show that it is possible to arrive at a weaker
pair of inequalities, and then extend them to include mixed
states. We make use of the entropic uncertainty relation for
probability distributions R and S associated to the mea-
surement of complementary quantum observables r and s
such that ½r; s� ¼ i [21]:

H½R� þH½S� � ln�e; (10)

specialized for R ¼ Rj and S ¼ Sj with j ¼ 1, 2. This

gives expð2H½Rj� þ 2H½Sj�Þ � ð�eÞ2, which leads to

H½R�� þH½S�� � 1

2
ln

�
2ð�eÞ2 þX

i�j

eð2H½Ri�þ2H½Sj�Þ
�
:

(11)

Using relation (10) again, one obtains

H½R�� þH½S�� � 1
2 lnf2ð�eÞ2ð1þ cosh�HÞg; (12)

where �H ¼ 2H½S2� � 2H½S1�. Since the hyperbolic co-
sine is lower-bounded by 1, we have

H½R�� þH½S�� � ln2�e: (13)

The term on the right side is a state-independent lower
bound for H½R�� þH½S�� of any separable pure state.

To extend the inequalities (13) to include mixed states,
we use the fact that any bipartite separable state � can be
decomposed into a convex sum of pure states

� ¼ X
k

�kjc 1kihc 1kj � jc 2kihc 2kj; (14)

where �k � 0 and
P

k�k ¼ 1. The probability distributions
associated to a measurement r� is R� ¼ P

k�kRk�, where
Rk� is the probability to detect r� for each pure state in the
decomposition (14). The concavity of the Shannon entropy
[23] gives

H½R�� �
X
k

�kH½Rk��; (15)

and likewise for H½S��. As H½Rk�� ¼ H½Rk1 � Rk2�, in-
equality (6) gives

H½R�� �
X
k

�k

2
lnðe2H½Rk1� þ e2H½Rk2�Þ: (16)

A similar condition holds for H½S��. Summing these two
inequalities, and using the fact that the left side of (9) is
lower-bounded by ln2�e, gives

H½R�� þH½S�� �
X
k

�k

2
ln

� X
i;j¼1;2

eð2H½Rki�þ2H½Skj�Þ
�

� X
k

�k lnð2�eÞ ¼ ln2�e; (17)

which is identical to (13). Thus, inequalities (13) are
satisfied by both pure and mixed separable states. We
note also that one can take the supremum of the first
inequality (17) over all possible decompositions of the
mixed state � to arrive at a stronger inequality. However,
this is not suitable for experimental purposes.
We also note that inequalities (13) can also be obtained

using the positive partial transpose criterion [2] as we will
now show. First, we note that the marginal distributions
under partial transposition are

~R� ¼ R� and ~S� ¼ S�: (18)

Noting that ½r�; s�� ¼ 2i, the relations in (18) imply that
any separable state must verify the uncertainty relation

H½ ~R�� þH½~S�� � ln2�e, which leads directly to inequal-
ities (13). Furthermore, we see in (18) that the partial
transposition interchanges the variables sþ and s�, which
is the key to obtain entanglement criteria based on uncer-
tainty inequalities that can arise from the noncomutativity
of r� and s�.
An upper bound to the left side of (13) can be obtained

by considering that the Shannon entropy of a continuous
variable with variance �2 is maximized when the proba-

bility distribution is Gaussian, for which HGauss ¼
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�e�2

p
[22,23]. Then,

ln2�e���� � H½R�� þH½S�� � ln2�e; (19)

where �2� and �2� are the variances of R� and S�, respec-
tively. This upper limit is reached for Gaussian states, in
which case we recover the Mancini-Giovannetti-Vitali-
Tombesi (MGVT) product inequality [4]

���� � 1: (20)
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The left side of the double inequality (19) proves that the
conditions (13) are more sensitive than the variance prod-
uct criteria, with equivalence in the case of Gaussian states.
This is in accord with the extremality of entangled
Gaussian states [24].

In the definition of the operators (1) we included the
parameter �j to account for local rotations of the quad-

rature measurements. To successfully employ the entropic
criteria, it is necessary to find suitable rotated quadrature
operators, parametrized by angles �1 and �2. In addition,
one can optimize over local squeezing parameters, which
can be included a posteriori [7]. So, in order to complete
the analysis of the effect of real linear canonical trans-
formations over the single mode quadrature operators [that
form the real symplectic group Spð2;RÞ] let us consider
now the effect of local squeezing, which can be accounted
for by redefining the rotated operators as

r 0� ¼ a1r1 � a2r2 and s0� ¼ 1

a1
s1 � 1

a2
s2: (21)

Substituting these operators, inequality (9) becomes

H½R0�� þH½S0�� �
1

2
ln

� X
i;j¼1;2

eð2H½Ri�þ2H½Sj�Þþ2 lnðai=ajÞ
�
;

(22)

and applying the entropic uncertainty relation (10) results
in

H½R0�� þH½S0�� � lnð2�eÞ; (23)

where R0� and S0� are the probability distributions for
measurements of the operators (21). It is straightforward
to show that both entropy inequalities (22) and (23) reduce
to (9) and (13) when a1 ¼ a2, which demonstrates that
these inequalities are invariant to equal amounts of local
squeezing.

Examples.—Inequalities (9) and (13) are more sensitive
than criteria involving sums or products of variances. We
will now illustrate this point with several examples of non-
Gaussian states. Let us first consider a non-Gaussian wave
function of the form

�ðr1; r2Þ ¼ ðr1 þ r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
����3þ

q e�ðr1þr2Þ2=4�2
þe�ðr1�r2Þ2=4�2� : (24)

This state is nonseparable for all values of ��. For this
state both the Simon PPT criteria [2], which is a necessary
and sufficient condition to detect entanglement in Gaussian
states, and the MGVT criteria with �1 ¼ �2 ¼ 0, detect

entanglement provided ��=�þ >
ffiffiffi
3

p 	 1:732 or

��=�þ < 1=
ffiffiffi
3

p 	 0:577. With �1 ¼ �2 ¼ 0, the insepa-
rability criteria (13) gives H½R�� þH½S�� ¼
lnð4�e���=��Þ, where � ¼ 0:577 . . . is Euler’s constant.

Entanglement is detected provided ��=�þ < eð1��Þ=2 	
0:763 or ��=�þ > 2=eð1��Þ 	 1:310. Thus, the entropy
criterion (13) is more sensitive than the Simon and MGVT

conditions. Numerical results show that the ranges in
which the pair of inequalities (9) detect entanglement
overlap, indicating that they always detect entanglement
in the state (24). A pictorial representation of these results
is shown in Fig. 1.
We tested these criteria numerically for a number of

combinations of low-order Fock states. A particularly in-

teresting example is the state j	i ¼ j0; 0i= ffiffiffi
2

p þ
j2; 0i=2þ j0; 2i=2, which is undetectable with any
second-order criterion [25]. Entanglement is detectable
using the stronger entropic inequality (9) with �1 ¼
��=4 and �2 ¼ �=4. We also tested ‘‘N00N’’ states of

the form ðjN; 0i þ j0; NiÞ= ffiffiffi
2

p
, where jNi is an N-photon

Fock state. None of these states is detected by the Simon
PPT criteria [2] nor inequalities (13). The strong criteria
(9) detects entanglement up to N ¼ 5 with �1 ¼ �2 ¼ 0
for all values of N except N ¼ 2, for which �1 ¼ 0 and
�2 ¼ �=2 were used.
To further test these criteria we generated uniform ran-

dom pure states [26] of the form jc i ¼ P
D
n;m¼0 Cnmjn;mi,

and tested inequalities (9) and (13) and also the MGVT

FIG. 1 (color online). Pictorial representation of three insepa-
rability criteria for the pure state (24) as a function of ��=�þ.
The criteria called ‘‘entropy inequality’’ and ‘‘strong entropy
inequality’’ correspond, respectively, to Eqs. (13) and (9). The
shaded regions correspond to the intervals of ��=�þ where each
criteria detect entanglement and blank regions where they do
not. Both criteria presented here are stronger than the Simon PPT
condition [2].

TABLE I. Results for random states jc i (see text). nstrong,
nweak, and nMGVT are the percentage of states detected by
inequalities (9), (13), and (20), respectively. In all cases, the
angles �1 and �2 were scanned in intervals of �=4.

Number of states D nstrong nweak nMGVT

6000 2 74.4% 17.3% 9.9%

1600 3 86.3% 0.5% 0.2%

800 4 84.9% 0% 0%

720 5 81.0% 0% 0%

120 7 62.5% 0% 0%
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criteria, while varying angles �1 and �2 in intervals of�=4.
Results are summarized in Table I. The strong inequality
(9) detected more than 62% of the randomly generated
states up to D ¼ 7 (the vanishing fraction of randomly
generated separable states would only increase this value).

Criteria (13) also applies to mixed states. Let us consider
a dephased cat state characterized by the parameter 0 

p 
 1, given by

� ¼ Nð
Þfj
;
ih
;
j þ j�
;�
ih�
;�
j
� ð1� pÞðj
;
ih�
;�
j þ j�
;�
ih
;
jÞg;

(25)

where Nð
Þ is a normalization constant. This state is
separable only when p ¼ 1, and is undetected by any
second-order criteria for any value of p. The entanglement
criteria (13) is shown in Fig. 2 as a function of 
 and p for
real 
. Using �1 ¼ �2 ¼ 0, the sum H½R�� þH½Sþ� is
less than ln2�e, and thus entanglement is detected, for a
large range of 
 and p.

Let us briefly discuss the application of these entropic
criteria in an experimental setting. For fixed values �1 and
�2 of the local rotations the Shannon entropies H½R�� and
H½S�� can be calculated using the marginal probability
distributions R� and S�. These can be determined directly
via measurement of r� and s�, or calculated from the joint
probability distributions Rðr1; r2Þ and Sðs1; s2Þ. We stress
that the sole determination of these probability distribu-
tions does not allow one to calculate arbitrary moments
involving products of the rj and sj operators. Hence, these
measurements alone are not enough to determine all the
second-order moments required to evaluate even the
second-order criterion of Simon [2]. The higher-order
criteria in [14] requires even more involved measurement
schemes [15]. In summary, the evaluation of our entropic
criteria requires the same experimental resources as those

required to evaluate the commonly employed second-order
inequalities in [3–5], while providing a more sensitive
entanglement test. We thus expect that the inseparability
tests presented here will be of great use in experimental
settings.
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FIG. 2 (color online). Violation of entanglement criteria (13)
for the dephased cat state (25). The vertical axis is the difference
of the left-hand side (lhs) and right-hand side (rhs) of (13). See
text for details.
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