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How fast a quantum state can evolve has attracted considerable attention in connection with quantum

measurement and information processing. A lower bound on the orthogonalization time, based on the

energy spread �E, was found by Mandelstam and Tamm. Another bound, based on the average energy E,

was established by Margolus and Levitin. The bounds coincide and can be attained by certain initial states

if �E ¼ E. Yet, the problem remained open when �E � E. We consider the unified bound that involves

both �E and E. We prove that there exist no initial states that saturate the bound if �E � E. However, the

bound remains tight: for any values of �E and E, there exists a one-parameter family of initial states that

can approach the bound arbitrarily close when the parameter approaches its limit. These results establish

the fundamental limit of the operation rate of any information processing system.
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After the classical result of Mandelstam and Tamm [1],
it was shown by Fleming [2], Anandan and Aharonov [3],
and Vaidman [4] that the minimum time � required for
arriving to an orthogonal state is bounded by

� � h=4�E; (1)

where ð�EÞ2 ¼ hc jH2jc i � ðhc jHjc iÞ2, H is the
Hamiltonian, and jc i the wave function of the system. A
different bound was obtained in [5], namely,

� � h=4E: (2)

Here, E ¼ hc jHjc i is the quantum-mechanical average
energy of the system (the energy of the ground state is
taken to be zero). Both bounds (1) and (2) are tight, and
achieved for a quantum state such that �E ¼ E.

Since then, a vast literature has been devoted to various
aspects of this problem. In particular, inequality (2) has
been proved for mixed states and for composite systems
both in separable and in entangled states (e.g., Giovannetti
et al. [6,7], Zander et al. [8]). Bound (2) obtained for an
isolated system has been generalized to a system driven by
an external Hamiltonian (a ‘‘quantum gate’’) in [9,10].
Various derivations of (1) and (2) (e.g., [11–13]), bounds
based on energy-distribution moments [14], more general
problems of time-optimal quantum evolution [12,15–23],
and the ultimate limits of computation [24,25] have been
considered.

However, what remained unnoticed is the paradoxical
situation of the existence of two bounds based on two
different characteristics of the quantum state, seemingly
independent of one another. Since the average energy E
and the energy uncertainty �E play the most determina-
tive role in quantum evolution, it is important to have a
unified bound that would take into account both of these
characteristics.

In all known cases where bounds (1) and (2) can be

exactly attained, the ratio � ¼ �E
E equals 1. A question

arises: what happens if � � 1? Some authors just assumed

without justification that the minimum orthogonalization
time is

�min ¼ max

�
h

4E
;

h

4�E

�
¼ h

2ðEþ �E� jE� �EjÞ : (3)

In fact, the situation is not so simple. Bound (3), indeed,
can only be achieved for � ¼ 1. However, this bound
remains tight when � � 1 as well, though in this case it
is only asymptotically attainable.
Theorem 1.—Under the assumption that the smallest

(ground) energy of a quantum system is zero,
(i) Bound (1) is attained only by the two-level state

jc i ¼ 1ffiffiffi
2

p ðjc 0i þ jc 1iÞ; (4)

where Hjc ki ¼ kE1jc ki and k ¼ 0; 1.
(ii) The only state that attains bound (2) is likewise (4).
State (4) is unique up to degeneracy of the energy level

E1 and arbitrary phase factors for jc 0i and jc 1i.
To prove statement (i) we shall use the trigonometric

inequality

cosx � 1� 4

�2
x sinx� 2

�2
x2; (5)

which is valid for any real x. Note that (5) turns into an
equality iff x ¼ 0 or x ¼ ��. Let the initial state be
jc ð0Þi ¼ P1

n¼0 cnjEni, where the jEni are energy eigen-

states of the system and
P1

n¼0 jcnj2 ¼ 1. Then

jSðtÞj2 ¼ jhc ð0Þjc ðtÞij2

¼ X1
n;n0¼0

jcnj2jcn0 j2e�iðEn�En0 Þt=@

¼ X1
n;n0¼0

jcnj2jcn0 j2 cosEn � En0

@=t
: (6)

Using inequality (5), we obtain
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jSðtÞj2 � 1� 4

�2

X1
n;n0¼0

jcnj2jcn0 j2 En � En0

@=t
sin

En � En0

@=t

� 2

�2

X1
n;n0¼0

jcnj2jcn0 j2
�
En � En0

@=t

�
2

¼ 1þ 4t

�2

djSðtÞj2
dt

� 1

�2

�
�E

@=2t

�
2
: (7)

Since jSðtÞj2 � 0, it follows that djSðtÞj2
dt ¼ 0 whenever

SðtÞ ¼ 0. Thus, at a time � such that Sð�Þ ¼ 0, the second
term in (7) vanishes, and we obtain

0 � 1� 4�2

�2
@
2
ð�EÞ2; (8)

which yields inequality (1); this is just another way to
derive that bound. Yet, for (8) to turn into an equality it
is necessary that inequality (5) turn into an equality for
every term of the double summation (6). Hence, either

xnn0 ¼ En�En0
@=� ¼ 0 or xnn0 ¼ En�En0

@=� ¼ �� for all n, n0

such that cn � 0, cn0 � 0. It follows that, to attain bound
(1), jc ð0Þi must be a superposition of only two energy
eigenstates with energies E0 ¼ 0 and E1.

To prove statement (ii), we repeat briefly the derivation
given in [5]. This time we use the trigonometric inequality

cosx � 1� 2

�
ðxþ sinxÞ; (9)

valid for all x � 0. Again, (9) turns into an inequality only
for x ¼ 0 or x ¼ �. Then

Re SðtÞ ¼ X1
n¼0

jcnj2 cosEnt

@

� X1
n¼0

jcnj2
�
1� 2

�

�
Ent

@
þ sin

Ent

@

��

¼ 1� 2Et

�@
þ 2

�
ImSðtÞ: (10)

At time �, ReSð�Þ ¼ ImSð�Þ ¼ 0. Hence 0 � 1� 2Et
�@ ,

which results in bound (2). However, to actually attain
this bound, inequality (9) must become an equality for

every term of the sum (10); that is, for any n, either xn ¼
Ent
@
¼ 0 or xn ¼ Ent

@
¼ �. This is possible iff jc ð0Þi has the

form (4).
Let us show now that no mixed state can attain bound

(3). Consider an initial mixed state density matrix �ð0Þ
with spectral decomposition

�ð0Þ ¼ X
i

�ijc ðiÞð0Þihc ðiÞð0Þj; (11)

where �i > 0,
P

i�i ¼ 1, and hc ðiÞð0Þjc ðjÞð0Þi ¼ �ij. At

time t, the density matrix becomes

�ðtÞ ¼ X
i

�ijc ðiÞðtÞihc ðiÞðtÞj:

Hence, if � is the orthogonalization time, then

Tr ½�ð0Þ�ð�Þ�¼X
i

X
j

�i�jjhc ðiÞð0Þjc ðjÞð�Þij2¼0: (12)

Note that all terms in the above sum are non-negative, and
therefore all of them must be zero to satisfy (12). As shown

above, terms hc ðiÞð0Þjc ðiÞð�Þi ¼ 0, for � given by (3), iff

each jc ðiÞð0Þi has the form (4). Consider two functions
from spectral decomposition (11),

jc ðiÞð0Þi ¼ 1ffiffiffi
2

p ðjc 0i þ jc ðiÞ
1 ð0ÞiÞ and

jc ðjÞð0Þi ¼ 1ffiffiffi
2

p ðjc 0i þ ajc ðiÞ
1 ð0Þi þ bjc ðjÞ

1 ð0ÞiÞ;
(13)

where hc ðiÞð0Þjc ðjÞð0Þi ¼ 0 and jaj2 þ jbj2 ¼ 1 (the zero-

energy state is nondegenerate). Since hc ðiÞð0Þjc ðjÞð0Þi ¼
1
2 ðhc 0jc 0i þ ahc ðiÞ

1 ð0Þjc ðiÞ
1 ð0ÞiÞ ¼ 0, it follows that a ¼

�1 and jc ðjÞð0Þi ¼ 1ffiffi
2

p ðjc ð0Þi � jc ðiÞ
1 ð0ÞiÞ. But then

hc ðiÞð0Þjc ðjÞð�Þi ¼ 1
2 ðhc 0jc 0i� hc ðiÞ

1 ð0Þjc ðiÞ
1 ð�ÞiÞ ¼ 1

2� 0.

Hence, equality (12) is not satisfied for � given by (3).
Thus, this bound is not attainable by a mixed state.
For pure states, results of theorem 1 also follow from the

analyses presented in [11,14].
Theorem 1 shows that bounds (1) and (2) can only be

attained by a state for which � ¼ �E
E ¼ 1. It follows from

that theorem that there exists no initial state jc ð0Þi with
� � 1 that would attain bound (3); i.e., no state can evolve
into an orthogonal state in the minimum time given by (1)
or (2). The question to be answered is how close it is
possible to approach the unified bound (3). Let us rewrite
(3) in a different form,

�min ¼ max

�
h

4E
;

h

4�E

�
¼ hð1þ ej ln�jÞ

4Eð1þ �Þ : (14)

Theorem 2.—For any� � 1 and any " > 0, there exists a
state jc ð0Þi such that hc ð0Þjc ð�Þi ¼ 0 at time

� � hð1þ ej ln�jÞ
4Eð1þ �Þ ð1þ "Þ: (15)

We will show that in both cases, �< 1 and �> 1, there
exist families of initial states that approach limit (14)
arbitrarily close.
(1) Let �< 1. Consider a family of states

jc ð0Þi ¼ c0j0i þ c1jE1i þ c2jE2i: (16)

Denote jcij2 ¼ pi, and introduce dimensionless variables

xiðtÞ ¼ 2�Ei

t

h
; i ¼ 0; 1; 2 (17)

(the rotation angles of the state vectors jEii). Then Sð�Þ ¼
hc ð0Þjc ð�Þi ¼ 0 iff xið�Þ ¼ xi such that

p1 sinx1 þp2 sinx2 ¼ 0; p0 þp1 cosx1 þp2 cosx2 ¼ 0;

where p0 þp1 þp2 ¼ 1: (18)

Let 0< p0 � 1 be a parameter of the family of states (16)
(one cannot set p0 ¼ 0, since that would change the
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ground energy level). When p0 is small, the values of x1
and x2 differ almost exactly by �. Let x2 ¼ �þ x1 �
� sinx1, with � � 1. Then, from (18),

p1 ¼ 1

2
� �

4
ð1þ cosx1Þ þOð�2Þ;

p2 ¼ 1

2
� �

4
ð1� cosx1Þ þOð�2Þ; p0 ¼ �

2
þOð�2Þ:

(19)

Using (19), we can calculate the average value hxi ¼ 2��
h E,

namely,

hxi ¼ p1x1 þ p2x2

¼ �

2
þ x1 � �

4
½2x1 � 2 sinx1 þ �ð1� cosx1Þ�

þOð�2Þ: (20)

The standard deviation �x ¼ 2��
h �E is obtained as

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1x

2
1 þ p2x

2
2 � ðp1x1 þ p2x2Þ2

q

¼ �

2
þ �

2�
½x1ð�þ x1Þ � � sinx1� þOð�2Þ: (21)

On the other hand, � ¼ �E
E ¼ �x

hxi ¼ �
�þ2x1

þOð�Þ; hence

x1 ¼ �

2

�
1

�
� 1

�
þOð�Þ: (22)

Substituting (22) into (21) and taking into account the last
expression from (19) yields

�x ¼ �

2
þ p0

�
�

4

�
1

�2
� 1

�
� sin

�

2

�
1

�
� 1

��
þOðp2

0Þ;
(23)

which results in

�¼ h�x

2��E

¼ h

4�E

�
1þp0

2

�
1

�2
�1� 4

�
sin2�

�
1

�
�1

��
þOðp2

0Þ
�
:

(24)

Finally, choosing

p0 < 2"

�
1

�2
� 1� 2

�
sin

�

2

�
1

�
� 1

���1
;

we obtain

h=4�E< � � hð1þ "Þ=4�E: (25)

(2) Let �> 1. Consider a family of states

jc ð0Þi ¼ c0j0i þ c1jE1i þ c2kþ1jE2kþ1i; (26)

where

k ¼ 1; 2; . . . ; E2kþ1 ¼ ð2kþ 1ÞE1;

jc0j2 ¼ p0 ¼ 1

2
; jc1j2 ¼ p1 ¼ 1

2

�
1� �

k2

�
;

jc2kþ1j2 ¼ p2kþ1 ¼ �

2k2
:

(27)

Using the dimensionless variables (17), it is readily seen
from (26) and (27) that Sð�Þ ¼ 0 at the least time � for
which x1ð�Þ ¼ x1 ¼ 2��

h E1 ¼ � and x2kþ1 ¼ 2��
h �

ð2kþ 1ÞE1 ¼ �ð2kþ 1Þ.
Then hxi ¼ p1x1 þ p2kþ1x2kþ1 ¼ �

2 ð1þ 2�
k Þ and

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1x

2
1 þ p2kþ1x

2
2kþ1 � ðp1x1 þ p2kþ1x2kþ1Þ2

q

¼ �

2

�
1þ 4�þ 2�

k

�
þO

�
1

k2

�
: (28)

Hence, � ¼ �x
hxi ¼ 1þ 4�þOð1kÞ and

� ¼ �� 1

4
þO

�
1

k

�
: (29)

Since hxi ¼ 2��
h E, it follows from (28) and (29) that

� ¼ h

4E

�
1þ �� 1

2k
þO

�
1

k2

��
: (30)

Thus, choosing k > ��1
2" guarantees that

h

4E
< � � h

4E
ð1þ "Þ:

j

(31)

As graphically illustrated in Fig. 1, Theorem 2 means
that there are families of states that approach equality in (3)
for a given value of �, in the limit as a certain parameter
approaches zero (for �< 1) or infinity (for �> 1), but no
state yields a strict equality in (3) for � � 1. It turns out

that bound (1) is tight whenever � ¼ �E
E � 1, while (2) is

tight whenever � � 1.
Another interesting question is the relationship between

the maximum energy eigenvalue Emax that contributes to
jc ð0Þi, the orthogonalization time, �, and the average
energy E. Note that determining the minimum � for a
given E is equivalent to determining the minimum E for
a given �. The next theorem provides simple but useful
results.
Theorem 3.—Let � be the minimum time such that

Sð�Þ ¼ hc ð0Þjc ð�Þi ¼ 0. Then there exist a state jc ð0Þi
and a set of energy eigenvalues fEng of all energy eigen-
functions that contribute to jc 0i such that

FIG. 1. The solid line shows bound (14); the dotted lines—
parametrized, respectively, by p0 ! 0 and k ! 1—show suc-
cessive approximations to this bound, corresponding to initial
states from families (16) and (26).
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Emax < h=� (32)

and

Emax=4 � E � Emax=2: (33)

Let Sð�Þ ¼ X1
n¼0

jcnj2e�2�iEn�=h ¼ 0: (34)

Suppose Ek � h
� . Then E

0
k ¼ Ek � h

� � 0 and e�2�iEk�=h ¼
e�2�iE0

k
�=h. Hence, replacing Ek by E0

k in (34) will not

affect the equality. Thus, the same orthogonalization time
� can be achieved with smaller average energy E0 ¼ E�
jckj2h=�. This proves inequality (32).

Now, let Emax be the largest energy of the energy eigen-
functions that contribute to jc ð0Þi, and let the average

energy be Eð1Þ. Obviously, the validity of (34) will not be
affected if we replace all energy levels En by Emax � En.

Then the average energy will become Eð2Þ ¼ Emax � Eð1Þ.
Since E can be chosen as minðEð1Þ; Eð2ÞÞ, this proves that
E � Emax=2. Also, substituting (2) into (32) yields
Emax=4 � E. Thus, (33) is proved. j

Theorem 3 allows us to restrict our attention to states
that satisfy (32) and (33) for further analysis of the or-
thogonalization time �.

Theorem 4.—Let Emax be the maximum energy of all
energy eigenfunctions that contribute to jc ð0Þi. Then the
minimum orthogonalization time � obeys the inequality

� � h=2Emax; (35)

and equality is attained iff jc ð0Þi has the form (4) with
E1 ¼ Emax.

Let Sð�Þ ¼ hc ð0Þjc ð�Þi ¼ Xm
n¼0

jcnj2e�2�iEn=h ¼ 0;

(36)

where Em ¼ Emax. Then, if � < h
2Emax

, all terms in the

above sum except the zeroth have strictly positive imagi-
nary parts—which violates equality (36). Similarly, if � ¼
h

2Emax
, then (36) is satisfied iff jc ð0Þi is of form (4) with

E1 ¼ Emax. j
The equality case in (35) had been considered in [13].
Some authors (e.g., [13]) prefer to write expressions (2)

and (35) as � � h=4ðE� E0Þ and � � h=2ðEmax � E0Þ,
arguing that a constant shift of the energy spectrum affects
only the overall time-dependent phase of the wave func-
tion. In our opinion, however, it is just this ‘‘freedom of
shift’’ that allows one to set to zero the energy of the
ground state even if the smallest eigenvalue of the
Hamiltonian is not zero (just as in the hydrogen atom).

Let us summarize the Letter’s main results. The unified
bound (14) can be saturated exactly only if � ¼ �E=E ¼
1. However, the bound remains tight for all values of �E

and E. Namely, if for any " > 0 there exist a state jc ð0Þi
such that h

4�E < � � h
4�E ð1þ "Þ; if �> 1, there exists a

jc ð0Þi such that h
4E < � � h

4E ð1þ "Þ. A transition from a

state to an orthogonal one can be taken as the elementary
step of a computational process [26]. Therefore, the num-
ber of orthogonal states visited by the system per unit time
can be viewed as the maximum rate of operation. Thus our
results establish the fundamental quantum limit of the
operation rate of any information processing system.
The authors wish to thank Professor D. Brody (Imperial
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