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We present an experimental state-independent violation of an inequality for noncontextual theories on

single particles. We show that 20 different single-photon states violate an inequality which involves

correlations between results of sequential compatible measurements by at least 419 standard deviations.

Our results show that, for any physical system, even for a single system, and independent of its state, there

is a universal set of tests whose results do not admit a noncontextual interpretation. This sheds new light

on the role of quantum mechanics in quantum information processing.
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The debate on whether quantum mechanics can be com-
pleted with hidden variables started in 1935 with an ingen-
ious example proposed by Einstein, Podolsky, and Rosen
[1] (EPR), suggesting that quantum mechanics only gives
an incomplete description of nature. Schrödinger pointed
out the fundamental role of quantum entanglement in
EPR’s example and concluded that entanglement is ‘‘the
characteristic trait of quantum mechanics’’ [2]. For years,
this has been a commonly accepted paradigm, stimulated
by the impact of the applications of entanglement in quan-
tum communication [3,4], quantum computation [5], and
violations of Bell inequalities [6–13]. However, Bohr ar-
gued that similar paradoxical examples occur every time
we compare different experimental arrangements, without
the need of entanglement nor composite systems [14]. The
Kochen-Specker (KS) theorem [15–17] illustrates Bohr’s
intuition with great precision. The KS theorem states that,
for every physical system there is always a finite set of tests
such that it is impossible to assign them predefined non-
contextual results in agreement with the predictions of
quantum mechanics [15,17]. Remarkably, the proof of
the KS theorem [17] requires neither a composite system
nor any special quantum state: it holds for any physical
system with more than two internal levels (otherwise the
notion of noncontextuality becomes trivial), independent
of its state. It has been discussed for a long time whether or
not the KS theorem can be translated into experiments
[18,19]. Recently, however, quantum contextuality has
been tested with single photons [20,21] and single neutrons
[22] in specific states.

Very recently it has been shown that the KS theorem can
be converted into experimentally testable state-dependent
[23] and state-independent [24] violations of inequalities
involving correlations between compatible measurements.
For single systems, only a state-dependent violation for a
specific state of single neutrons has been reported [25]. A
state-independent violation has been observed only in
composite systems of two 40Caþ trapped ions [26].
Following the spirit of the original KS theorem, which
deals with the problem of hidden variables in single sys-

tems, we report the first state-independent violation for
single-particle systems.
Any theory in which the nine observables A, B, C, a, b,

c,�,�, and � have predefined noncontextual outcomes�1
or þ1, must satisfy the following inequality [24]:

��hABCiþhabciþh���iþhAa�iþhBb�i�hCc�i�4;

(1)

where hABCi denotes the ensemble average of the product
of the three outcomes of measuring the mutually compat-
ible observables A, B, and C. Surprisingly, for any four-
dimensional system, there is a set of observables for which
the prediction of quantum mechanics is � ¼ 6 for any
quantum state of the system [24]. The purpose of this
experiment is to test this prediction on different quantum
states of a single-particle system.
A physical system particularly well suited for this pur-

pose is the one comprising a single photon carrying two
qubits of quantum information: the first qubit is encoded in
the spatial path s of the photon, and the second qubit in the
polarization p. The quantum states j0is ¼ jtis and j1is ¼
jris, where t and r denote the transmitted and reflected
paths of the photon, respectively, provide a basis for de-
scribing any quantum state of the photon’s spatial path.
Similarly, j0ip ¼ jHip and j1ip ¼ jVip, where H and V

denote horizontal and vertical polarization, respectively,
provide a basis for describing any quantum state of the
photon’s polarization.
A suitable choice of observables giving � ¼ 6 is the

following [24]:

A ¼ �s
z; B ¼ �p

z ; C ¼ �s
z � �p

z ;

a ¼ �p
x ; b ¼ �s

x; c ¼ �s
x � �p

x ;

� ¼ �s
z � �p

x ; � ¼ �s
x � �p

z ; � ¼ �s
y � �p

y ;

(2)

where �s
z denotes the Pauli matrix along the z direction of

the spatial path qubit, �p
x denotes the Pauli matrix along

the x direction of the polarization qubit, and � denotes
tensor product.
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To generate polarization-spatial path encoded single-
photon states, we used the setup described in Fig. 1. We
experimentally tested the value of � for 20 different quan-
tum states. It is of utmost importance for the experiment
that the measurements of each of the nine observables in
(2) are context independent [24], in the sense that the
measurement device used for the measurement of, e.g., B

must be the same when B is measured with the compatible
observables A and C, and when B is measured with b and
�, which are compatible with B but not with A and C. For
the experiment we used the measurement devices de-
scribed in Fig. 2, which satisfy this requirement.
For a sequential measurement of three compatible ob-

servables on the same photon, we used the single-
observable measuring devices in Fig. 2, appropriately ar-
ranged as described in Fig. 3. Since the predictions of both
noncontextual hidden variable theories and quantum me-
chanics do not depend on the order of the compatible

FIG. 1 (color online). Preparation of the polarization-spatial
path encoded states of single photons. The setup consists of a
source of H-polarized single photons followed by a half wave
plate (HWP) and a polarizing beam splitter (PBS), allowing any
probability distribution of a photon in the paths t and r. The
wedge (W) placed in one of the paths adds an arbitrary phase
shift between both paths. A HWP and a quarter wave plate
(QWP) in each path allow us to rotate the outputs of the PBS
to any polarization. Symbol definitions are given at the bottom of
Fig. 2.

FIG. 2 (color online). Devices for measuring the nine observ-
ables (2). A measurement of A requires only to distinguish
between paths t and r. For measuring b, note that its eigenstates
are ðjti � jriÞ= ffiffiffi

2
p

and they need to be mapped to the paths t and
r; this is accomplished by interference with the help of an
additional 50=50 beam splitter (BS) and a wedge. The measure-
ments of a and B are standard polarization measurements using a
PBS and a HWP. Observables C, c, �, �, and � are the product
of a spatial path and a polarization observable �s

i � �p
j . Each of

these observables has a four-dimensional eigenspace, but since
the observables need to be rowwise and columnwise compatible,
only their common eigenstates can be used for distinguishing the
eigenvalues. This implies that C, c, and � can be implemented as
Bell measurements with different distributions of the Bell states.
Similarly, � and � are Bell measurements preceded by a
polarization rotation. In this way � is compatible also with �
and �.

FIG. 3 (color online). Setups for measuring the six sets of
observables to test inequality (1). We explicitly describe the
setup for measuring C, A, and B; the description of the other
setups is obtained by replacing C, A, and B with the correspond-
ing observables. The seven boxes are single-observable measur-
ing devices (see Fig. 2). The photon, prepared in a specific state,
enters the device for measuring C through the device’s input and
follows one of the two possible outcomes. A detection of the
photon in one of these outputs would make the measurement of
the next observable impossible. Instead, we placed, after each of
the two outputs of the C-measuring device, a device for mea-
suring the second observable, A (we thus used two identical
A-measuring devices). Similarly, we also placed, after each of
the four outputs of the A-measuring devices, a device for
measuring the third observable, B (we thus used four identical
B-measuring devices). Note that we need to recreate the eigen-
states of the measured observable before entering the next
observable, since our single-observable measuring devices map
eigenstates to a fixed spatial path and polarization. Finally, we
placed a single-photon detector (D) after each of the eight
outputs of the four B-measuring devices. An individual photon
passing through the whole arrangement is detected only by one
of the eight detectors, which indicates which one of the eight
combinations of results for C, A, and B is obtained.
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measurements, we chose the most convenient order for
each set of observables (e.g., we measured CBA instead
of ABC). This was usually the configuration which mini-
mized the number of required interferometers and hence
maximized the visibility. Specifically, we measured the
averages hCABi, hcbai, h���i, h�Aai, h�bBi, and
hc�Ci, as described in Fig. 3.

Our single-photon source was an attenuated stabilized
narrow bandwidth diode laser emitting at 780 nm and
offering a long coherence length. The laser was attenuated
so that the two-photon coincidences were negligible. The
mean photon number per time window was 0.058.

All the interferometers in the experimental setup are
based on free space displaced Sagnac interferometers,
which possess a very high stability. We have reached a
visibility above 99% for phase insensitive interferometers,
and a visibility ranging between 90% and 95% for phase
sensitive interferometers.

Our single-photon detectors were Silicon avalanche
photodiodes calibrated to have the same detection effi-
ciency. All single counts were registered using an eight-
channel coincidence logic with a time window of 1.7 ns.

To test the prediction of a state-independent violation,
we repeated the experiment on 20 quantum states of differ-
ent purity and entanglement. For each pure state, we
checked each of the six correlations in inequality (1) for
about 1:7� 107 photons. The results for the mixed states
were obtained by suitably combining pure state data. Fig-
ure 4 shows that a state-independent violation of inequality
� � 4 occurs, with an average value for � of 5.4521.
Because of experimental imperfections, the experimental
violation of the inequality falls short of the quantum-
mechanical prediction for an ideal experiment (� ¼ 6).
The main systematic error source was due to the large

number of optical interferometers involved in the measure-
ments, the nonperfect overlapping of the light modes and
the polarization components. The errors were deduced
from propagated Poissonian counting statistics of the raw
detection events. The number of detected photons was
about 1:7� 106 per second. The measurement time for
each of the six sets of observables was 10 s for each state.
In Fig. 5 we also present measurement results for each

experimental setup for the maximally entangled state jc 3i
and the product state jc 14i defined in Table I. Probabilities
for each outcome as well as values of the correlations are
shown. The overall detection efficiency of the experiment,
defined as the ratio of detected to prepared photons, was
� ¼ 0:50. This value was obtained considering that the
detection efficiency of the single-photon detectors is 55%
and the fiber coupling is 90%. Therefore, the fair sampling
assumption (i.e., the assumption that detected photons are
an unbiased subensemble of the prepared photons) is
needed to conclude a violation of the inequality. This is
the same assumption as is adopted in all previous state-
dependent experimental violations of classical inequalities
with photons [7–9,11,13,20,21] and neutrons [22,25].

FIG. 4 (color online). State independence of the violation of
the inequality � � 4. The value of � was tested for 20 different
quantum states: four pure states with maximum internal entan-
glement between the spatial path and polarization which would
maximally violate a Clauser-Horne-Shimony-Holt–Bell-like in-
equality [27] (states jc 1i � jc 4i), one mixed state with partial
internal entanglement which would violate a CHSH–Bell-like
inequality (�5), one mixed state with partial internal entangle-
ment which would not violate a CHSH–Bell-like inequality (�6),
one mixed state without internal entanglement according to the
Peres-Horodecki criterion [28,29] (�7), 12 pure states without
internal entanglement (jc 8i � jc 19i), and a maximally mixed
state (�20). The explicit expression of each state is given in
Table I. The red solid line indicates the classical upper bound.
The blue dashed line at 5.4550 indicates the average value of �
over all the 16 pure states.

FIG. 5 (color online). Correlation measurements of all terms in
the inequality (1) for the states jc 3i (a) and jc 14i (b). The
figures show experimentally estimated probabilities for detecting
a photon in each of the eight detectors. A photon detection
corresponds to certain values (�1) for the three measured di-
chotomic observables. For example, the bar height at (þþþ ;
�Aa) represents the probability to obtain the results �, A, a ¼
þ1, and similarly (þþ� ; �Aa) represents �, A ¼ þ1 and
a ¼ �1. The expectation values for each measurement are also
given.
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In conclusion, our results show that experimentally ob-
served outcomes of measurements on single photons can-
not be described by noncontextual models. A remarkable
feature of this experiment is that the quantum violation of a
classical inequality requires neither entangled states nor
composite systems. It occurs even for single systems which
cannot have entanglement. Further on, it occurs for any
quantum state, even for maximally mixed states, like �20 in
Fig. 4, which are usually considered ‘‘classical’’ states.
This shows that entanglement is not the only essence of
quantum mechanics which distinguishes the theory from
classical physics; consequently, entanglement might not be
the only resource for quantum information processing.
Quantum contextuality of single quantum systems submit-
ted to a sequence of compatible measurements might be an
equally powerful, simpler and more fundamental resource.
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TABLE I. Experimental values of hCABi þ hcbai þ h���i þ
h�Aai þ h�bBi � hc�Ci for 20 quantum states. The average
value is 5:4550� 0:0006 and on average we violate the inequal-
ity with 655 standard deviations (SDs).

State Expectation value SD

jc 1i ¼ 1ffiffi
2

p ðjtijHi þ jrijViÞ 5:4366� 0:0012 1169

jc 2i ¼ 1ffiffi
2

p ðjtijHi � jrijViÞ 5:4393� 0:0023 621

jc 3i ¼ 1ffiffi
2

p ðjtijVi þ jrijHiÞ 5:4644� 0:0029 498

jc 4i ¼ 1ffiffi
2

p ðjtijVi � jrijHiÞ 5:4343� 0:0026 561

�5 ¼ 13
16 jc 1ihc 1j þ 1

16

P
4
j¼2 jc jihc jj 5:4384� 0:0010 1386

�6 ¼ 5
8 jc 1ihc 1j þ 1

8

P
4
j¼2 jc jihc jj 5:4401� 0:0010 1509

�7 ¼ 7
16 jc 1ihc 1j þ 3

16

P
4
j¼2 jc jihc jj 5:4419� 0:0010 1433

jc 8i ¼ jtijHi 5:3774� 0:0020 676

jc 9i ¼ jtijVi 5:5131� 0:0032 475

jc 10i ¼ jrijHi 5:4306� 0:0031 465

jc 11i ¼ jrijVi 5:4554� 0:0017 850

jc 12i ¼ 1ffiffi
2

p jtiðjHi þ jViÞ 5:4139� 0:0015 960

jc 13i ¼ 1ffiffi
2

p jtiðjHi þ ijViÞ 5:4835� 0:0022 667

jc 14i ¼ 1ffiffi
2

p ðjti þ jriÞjHi 5:5652� 0:0032 489

jc 15i ¼ 1ffiffi
2

p ðjti þ ijriÞjHi 5:5137� 0:0036 419

jc 16i ¼ 1
2 ðjti þ jriÞðjHi þ jViÞ 5:4304� 0:0014 1029

jc 17i ¼ 1
2 ðjti þ ijriÞðjHi þ jViÞ 5:2834� 0:0019 674

jc 18i ¼ 1
2 ðjti þ jriÞðjHi þ ijViÞ 5:5412� 0:0032 475

jc 19i ¼ 1
2 ðjti þ ijriÞðjHi þ ijViÞ 5:4968� 0:0032 462

�20 ¼ 1
4

P
4
j¼1 jc jihc jj 5:4437� 0:0012 1229
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