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We study matter-wave bistability in a spin-1 Bose-Einstein condensate dispersively coupled to a

unidirectional ring cavity. A unique feature is that the population exchange among different modes of

matter fields is accomplished via spin-exchange collisions. We show that the interplay between the atomic

spin mixing and the cavity light field can lead to a strong matter-wave nonlinearity, making matter-wave

bistability in a cavity at the single-photon level achievable.
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The macroscopic nonlinear phenomena associated with
ultracold atoms have become a mainstream of research
interest in the emerging field of atom optics [1]. Mean-
while they establish an intimate connection of the new field
to other branches of physics, such as nonlinear optics and
condensed matter physics. One important goal in this field
is to coherently manipulate the nonlinear behaviors of
ultracold atomic ensembles.

It is well known that an optical cavity can result in
modifications of the atom-photon interaction in a highly
nonlinear fashion. The exploration of such a nonlinear
interaction for applications of both applied and fundamen-
tal interest has led to many exciting developments, includ-
ing optical bistability, which was a subject of extensive
study by the optics community in the 1980s, due mostly to
the prospect of its use as an optical switch in all-optical
computers [2]. In recent years, rapid progress in cooling,
trapping, and condensation of neutral atoms has brought
new opportunities to cavity quantum electrodynamics
(QED). A combination of cold atoms and large coherence
couplings enables single-atom trajectories to be monitored
in real time with high signal-to-noise ratio [3] which allows
the vacuum Rabi splitting of a single trapped atom to be
measured [4].

Instead of a single atom, more recent studies in cavity
QED focus on cavity systems with a collection of ultracold
atoms [5–10], in which strong coupling of ultracold atomic
gases to cavity optical field are realized. This allows us to
enter a new regime of cavity QED, where a cavity field at
the level of a single photon can significantly affect the
collective motion of the atomic samples. This opens up
new possibilities to manipulate the nonlinear dynamics of
ultracold atomic gases with cavity-mediated nonlinear
interaction.

So far the works involving cavity with ultracold atomic
gases have mainly focused on the interplay between the
cavity field and the atomic center-of-mass motion [7–14].
The role of internal atomic spin degrees of freedom in the
atom-cavity coupling has not yet been seriously explored.
A key property of spinor Bose-Einstein condensate (BEC)

is that atoms of different spin components can couple to
each other via spin-exchange interaction, which gives rise
to spin mixing [15], a nonlinear dynamical phenomenon
under intense theoretical [16–18], and experimental inves-
tigation [19–23]. In this work we propose a scheme to
exploit the atom-cavity coupling to control the atomic
spinor dynamics in a spinor BEC. In contrast to the existing
works which focus primarily on optical bistability, here we
pay particular attention to the matter-wave bistability. As
we will show, the combination of cavity-induced phase
shift and the intrinsic spin-exchange interaction of a spinor
BEC leads to simultaneously strong matter-wave and opti-
cal bistability, providing a new playground for exploring
the spinor dynamics and cavity nonlinear optics. This also
distinguishes our system from previously proposed ones
that exhibit matter-wave bistability which are direct ana-
logues of optical bistable systems [24].
Our model—a spinor BEC with hyperfine spin F ¼ 1

confined in a unidirectional ring cavity—is depicted sche-
matically in Fig. 1. At zero temperature we assume single-
mode approximation (SMA) that atoms in different spin
states can be described by the same spatial wave function
�ðrÞ, then each spin component can be associated with an
annihilation operator ĉ� (� ¼ �, 0). A weak external
magnetic field may be applied to break the degeneracy
and provide the quantization axis. The cavity is designed
in a way that only a single traveling mode with frequency
!c, described by an annihilation operator â, interacts with

FIG. 1. Schematic diagram of the system.
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the atoms. The cavity is driven by a coherent laser field
with frequency !p and amplitude "p.

The Hamiltonian under the SMA can be written as

Ĥ¼ Ĥ0þ½U0ðĉyþĉþþ ĉy�ĉ�Þ��c�âyaþ i"pðây� âÞ;

with Ĥ0 describing the dynamics of spinor condensate

Ĥ 0 ¼ �aðĉyþĉyþĉþĉþ þ ĉy�ĉy�ĉ�ĉ� þ 2ĉy0 ĉ0ĉ
y
þĉþ

þ 2ĉy0 ĉ0ĉ
y�ĉ� � 2ĉyþĉþĉy�ĉ� þ 2ĉy0 ĉ

y
0 ĉþĉ�

þ 2ĉyþĉy�ĉ0ĉ0Þ þ qðĉyþĉþ þ ĉy�ĉ�Þ;
here �a is the spin-dependent interaction coefficient [15] of
the condensate. We denote q as the quadratic Zeeman shift.
�c ¼ !p �!c is the cavity-pump detuning. U0 ¼
g2=ð!p �!aÞ, with g being the dipole coupling strength

and !a the atomic transition frequency, characterizes the
strength of the atom-photon coupling. We will assume that
the photon frequency is sufficiently detuned away from the
atomic transitions so that the atomic upper level can be
adiabatically eliminated and the interaction between pho-
ton and atom is essentially of dispersive nature. We assume
that the photons are � polarized which couple the atoms in
the F ¼ 1 ground-state manifold to the excited manifold
with F0 ¼ 1. The transition selection rule is �mF ¼ 0.
However, since the transition jF ¼ 1; mF ¼ 0ig !
jF0 ¼ 1; m0

F ¼ 0ie is forbidden, spin-0 level is not coupled
by the photon. For simplicity, we also assume that the
coupling strength between the cavity field and spin-�
atoms are the same. We will treat the leakage of cavity
photons phenomenologically by introducing a decay rate �
with typical values �1 MHz. By contrast, the time scale
for the atomic spin-mixing dynamics is much longer—the
measured population oscillation frequency is below 10 Hz
for 87Rb [22] and around 50 Hz for 23Na [23]. This sepa-
ration of time scales allows us to assume that the cavity
field always follows adiabatically the atomic dynamics

â ¼ "p

�� i½�c �U0ðĉyþĉþ þ ĉy�ĉ�Þ�
: (1)

The corresponding Heisenberg equations of motion for the
atomic field operators read

i _̂c� ¼ ½ĉ�; Ĥ0� þU0â
yâĉ�; i _̂c0 ¼ ½ĉ0; Ĥ0�: (2)

Combining Eqs. (1) and (2), in the bad cavity limit one can

find the effective Hamiltonian Ĥeff which satisfies i _̂c� ¼
½ĉ�; Ĥeff�

Ĥ eff ¼ Ĥ0 �
"2p
�
tan�1

�
�c �U0ðĉyþĉþ þ ĉy�ĉ�Þ

�

�
: (3)

In the following we adopt a mean-field treatment by
replacing the operators â and ĉ� with the corresponding
C numbers � ¼ hâi and c� ¼ ffiffiffiffiffiffiffi

N�

p
expð�i��Þ, where N�

and �� represent the number and phase of the bosonic field
for the particles in the spin component �, respectively. We
take advantage of the existence of two conserved quanti-
ties: the total atomic number N ¼ Nþ þ N� þ N0 and
magnetization M ¼ Nþ � N�, and simplify our problem
into the one described by two variables: the normalized
population in the spin-0 component x ¼ N0=N and the
relative phase � ¼ 2�0 � �þ � ��. The mean-field coun-
terpart of the quantum effective Hamiltonian (3) reads

H

N�
¼ �qð1�xÞþ ��ax½1�xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�xÞ2�m2

q
cos��þUðxÞ;

(4)

with UðxÞ � �2tan�1½ �U0ð1� xÞ � ��c�=N and m ¼ M=N
is the atomic polarization. We have defined other dimen-
sionless parameters as

�� a¼N�a

�
; �q¼q

�
; �U0¼NU0

�
; �¼"p

�
; ��c¼�c

�
:

The equations of motion for x and � read

dx=d	 ¼ 2 ��ax
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ2 �m2

q
sin�; (5a)

d�=d	 ¼ �2ð �qþ �U0j�j2=NÞ

þ 2 ��a

�
1� 2xþ ð1� xÞð1� 2xÞ �m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞ2 �m2
p cos�

�
;

(5b)

where 	 ¼ �t is the dimensionless time.
From Eq. (5b) one can see that the cavity modifies the

atomic dynamics in the same manner as the quadratic
Zeeman terms �q, which will lead to redistribution of
atomic population among different spin states through
spin mixing. However, this cavity-induced effective
Zeeman energy is dependent upon the atomic population
distribution via Eq. (1). It is this interdependence of the
atomic and photonic modes that leads to interesting non-
linear dynamics of this coupled system, which will be the
focus of this work.
The dynamics of the system can be captured by the

contour plot of the Hamiltonian H, which is intimately
related to the fixed points (x0, �0) given by the equilibrium
solution of Eqs. (5). In this Letter, we only consider the
antiferromagnetic atoms (23Na) with ��a > 0. The ferro-
magnetic case is not qualitatively different. In the absence
of the cavity field, the equilibrium solutions (x0, �0) have
been studied in [17,25]. Besides the phase-independent
solutions of x0 ¼ 0 and x0 ¼ 1� jmj for which the rela-
tive phase �0 is not well defined, the spinor condensate
system supports at most one phase-dependent solution with
�0 ¼ 0 or �. The presence of the cavity field dramatically
changes this property. The phase diagram identifying dif-
ferent types of solution is mapped out in the parameter
space of �2 and ��c, as shown in Fig. 2. We can see that, in
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certain parameter regimes, the number of different phase-
dependent solutions can be more than one, and different
solution regimes of the coupling system can be crossed by
varying ��c and �

2. Since these two parameters are directly
related to the pump laser, this means that the dynamical
properties of the system can be easily manipulated by
tuning the intensity or frequency of the pump laser field.

Here we consider the case with the pump intensity �2

fixed, by varying the cavity-pump detuning ��c, the equi-
librium properties of the system are changed, as shown in
the red-dashed line in Fig. 2(a). The corresponding phase-
dependent fixed points are derived and the results are
shown in Fig. 3. The system exhibits typical bistable
behavior: for certain values of ��c, it supports three sta-
tionary solutions. A standard linear stability analysis shows

that in the region with three solutions, two of these are
dynamically stable and the third one is dynamically un-
stable. Further insights can be gained by examining the
corresponding contour plot of H (Fig. 3, lower panel). The
unstable fixed points correspond to the saddle points in the
contour plots.
The same hysteresis feature can also be identified from

the mean-field energy diagram by the appearance of a
swallowtail loop structure (the dots in Fig. 4). A quantum
calculation involving a direct diagonalization of the effec-

tive Hamiltonian Ĥeff confirms a well-known correspon-
dence between the semiclassical and quantum energy
levels [26], namely, in the bistable region the quantum
spectrum (the solid lines in Fig. 4) exhibits a series of
anticrossings and when connected, these anticrossings
form the top segment of the swallowtail structure of the
corresponding mean-field energy level. (In this example,
we have, without loss of the essential physics, adopted a
much smaller system so that the quantum calculation can
be done within a reasonable computational time.)
Let us now return to Fig. 3. As indicated in the upper

panel of Fig. 3, both the cavity field and the atoms exhibit
bistable behavior. The mean cavity photon number is al-
ways less than unity. Remarkably, such a small number of
photons affect the whole condensate and lead to complete
population redistribution among different atomic spin
states, which can be readily observed in experiment. This
behavior can be understood as follows: Because of the
sensitive dependence of the spin dynamics on the relative
atomic energy levels, cavity-induced phase shift can effec-
tively result in population redistribution among the spin
states even at the single-photon level. The atoms in turn
collectively act as a dispersive medium shifting the cavity
resonance. Bistability results from this nonlinear feedback
between photons and atoms.
It is interesting to compare our study with the experi-

mental work of Refs. [8,10], where the motional degrees of
freedom of ultracold atomic gases represent the source of
nolinearity affecting light-atom interactions. In their sys-

FIG. 2 (color online). Phase diagram in the parameter space of
��c and �2 for different types of solutions: (a) � ¼ 0; (b) � ¼ �.
Different regions are differentiated by their colors and are
labeled with the numbers of corresponding solutions. In the
black region, no physical phase-dependent solutions can be
found. The dimensionless parameters are estimated to be ��a ¼
10�3, �q ¼ 2 ��a, and �U0 ¼ �5 [29], the other parameters are set
as m ¼ 0 and N ¼ 1000. The red-dashed line in (a) correspond
to �2 ¼ 0:8.

cc

FIG. 3 (color online). Upper panel: Mean intracavity photon
number j�j2 and the normalized spin-0 population x versus
cavity-pump detuning ��c for the steady-state solutions with
�2 ¼ 0:8, corresponding to the red-dashed line in Fig. 2(a).
The ones represented by the red dotted lines correspond to
dynamically unstable solutions. Lower panel: From left to right,
the phase-space contour plot of H corresponding to different
values of ��c marked in the upper panel as a, b and c, respectively.

FIG. 4. Quantum and mean-field energy levels with N ¼ 20,
m ¼ 0:2, and �2 ¼ 0:02; the other parameters are the same as
before. The solid lines are quantum energy levels, the black dots
refer to the mean-field energy levels with � ¼ �, while the white
dots refer to those with � ¼ 0.
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tem the atomic zero-momentum mode and two side modes

with momentum �2@k (k is the cavity light wave vector)
dominate the dynamics. The nonlinearity originate from
the coherence between these modes which is induced by
the coupling provided by the standing-wave cavity field
[27]. Such a coupling is neither strong as it is provided by
the weak cavity field, nor resonant as there is a detuning of

4@!rec with!rec ¼ @k2=2m the atomic recoil frequency. In

these systems, optical bistability of low photon numbers is
possible and is indeed observed. In principle, atomic popu-
lation in different motional states should also exhibit bi-
stability. However, such matter-wave bistability will be
difficult to observe as it is not easy to measure atomic
population of different momentum states inside a cavity in
real time. Furthermore, due to the inefficient coupling
between atomic momentum modes as we just mentioned,
the matter-wave bistability is very weak since most of the
atomic population will remain in the zero-momentum
state. In a recent work [14] where this system is theoreti-
cally examined, it is found that bistable behavior involving
tens of photons can only transfer about 20% of the total
atomic population out of the zero-momentum state (see
Fig. 1 of Ref. [14]).

In contrast, in the model we considered here, the coher-
ence between the internal atomic spin states affecting
atom-light interaction is induced by the intrinsic spin-
exchange interaction which represents a matter-wave ana-
log of the four-wave mixing in nonlinear optics. An im-
mediate advantage is that it can be independently tuned
with respect to the cavity field, thereby dramatically in-
creasing the chance of large population change among spin
states at a low cavity field. Consequently, our system can
exhibit very strong matter-wave bistability. This is indeed
confirmed by our detailed calculations.

In summary, we have studied the mutual interaction of a
spinor condensate with a single-mode cavity field. We
show that the coupled cavity-spinor condensate system
can display simultaneously strong optical bistability at
the single-photon level and strong matter-wave bistability
involving a whole condensate with a macroscopic number
of atoms. This opens up new opportunities to explore a
diversity of new phenomena in cavity nonlinear optics with
low photon numbers and many-body physics with quantum
gases. Before ending, we note that the condensate deple-
tion may become significant in the long time scale as the
quantum fluctuations of the cavity can introduce excess
noise to the condensate system [28]. A more careful treat-
ment taking these effects into proper account will be left
for further investigation.
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