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The accuracy by which biological cells sense chemical concentration is ultimately limited by the

random arrival of particles at the receptors by diffusion. This fundamental physical limit is generally

considered to be the Berg-Purcell limit [Biophys. J. 20, 193 (1977)]. Here we derive a lower limit by

applying maximum likelihood to the time series of receptor occupancy. The increased accuracy stems

from solely considering the unoccupied time intervals—disregarding the occupied time intervals as these

do not contain any information about the external particle concentration, and only decrease the accuracy

of the concentration estimate. Receptors which minimize the bound time intervals achieve the highest

possible accuracy. We discuss how a cell could implement such an optimal sensing strategy by absorbing

or degrading bound particles.
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Single cells can sense external chemical concentrations
with extremely high accuracy. For instance, the chemo-
tactic bacterium Escherichia coli can detect 3.2 nM of the
attractant aspartate [1], which corresponds to only about 3
attractant particles in the volume of the cell. Single
eukaryotic cells such as Dictyostelium discoideum [2]
and Saccharomyces cerevisiae [3] (budding yeast) are
well known to measure and respond to extremely shallow
gradients of chemical signals [4]. These observations raise
the question how close do cells operate to the fundamental
physical limit of sensing accuracy set by the random arrival
of particles by diffusion at the receptors? This question was
addressed in a seminal work by Berg and Purcell [5], and
recently reinvestigated by Bialek and Setayeshgar [6,7].
Today, it is generally accepted that the limit derived by
Berg and Purcell is a fundamental physical limit which
cannot be exceeded. In this Letter, we show for a single
receptor how this limit can be improved (using maximum
likelihood estimation), and discuss how cells could imple-
ment this improved sensing strategy in practice.

Berg and Purcell calculated the accuracy of concentra-
tion sensing by a single receptor which binds particles of
concentration c0 with rate kþc0 and unbinds particles with
rate k� [see Fig. 1(a)]. Specifically, they considered a
binary time series of total length T composed of bound
and unbound time intervals [see Fig. 1(b)]. Berg and
Purcell estimated concentration directly from the fraction
of time T that a particle is bound. By considering the time
correlations of particles bound to the receptor, they found
the variance ð�cÞ2 in the estimated concentration to be [5]

ð�cÞ2
c20

¼ 2 ��b
T �p

¼ 1

2Dsc0ð1� �pÞT ; (1)

where D is the diffusion coefficient, ��b is the true average
duration of bound intervals, s describes the receptor di-
mension, and �p is the true equilibrium probability for the

receptor to be bound. The last equality in Eq. (1) is ob-
tained using detailed balance; i.e., at equilibrium the rate of
unbinding transitions �p= ��b must equal the rate of binding
transitions ð1� �pÞ= ��u, where ��u is the average duration of
unbound intervals. For diffusion-limited binding, 1= ��u ¼
4Dsc0, yielding the right-hand side of Eq. (1). In the
following we revisit the Berg and Purcell limit on the
accuracy of concentration sensing from the perspective of
maximum likelihood estimation.
Maximum likelihood estimation is a statistical method

used for fitting a mathematical model to data [8]. For a
fixed set of data and an underlying parametrized model,
maximum likelihood picks the values of the model parame-
ters that make the data ‘‘more likely’’ than they would be
for any other values of the parameters. Here, the cell’s best
estimate of concentration can be obtained from maximum
likelihood applied to the time series ftþ; t�g of duration T
with particle binding events at times tþ;i and unbinding

events at times t�;i [see Fig. 1(b)]. Following Berg and

Purcell, we disregard potential rebinding of previously
bound particles, assuming diffusion is sufficiently fast to
remove recently unbound particles from the vicinity of the
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FIG. 1. Schematic of particle-receptor binding. (a) An unoc-
cupied receptor can bind a particle with rate kþc0, and an
occupied receptor can unbind a bound particle with rate k�.
(b) Binary time series of receptor occupancy.
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receptor (but, following [6,7], we address the more general
case in the appendix).

The probability for a time series to occur given a particle
concentration c is

Pðftþ; t�g; cÞ ¼
Y
i

pbðtþ;i; t�;iÞp�ðt�;iÞpuðt�;i; tþ;iþ1Þ

� pþðtþ;iþ1Þ; (2)

where the probability for a particle to remain bound from
tþ;i to t�;i is

pbðtþ;i; t�;iÞ ¼ pbðt�;i � tþ;iÞ ¼ e�k�ðt�;i�tþ;iÞ (3)

and the probability for a receptor to remain unbound from
t�;i to tþ;iþ1 is

puðt�;i; tþ;iþ1Þ¼puðtþ;iþ1� t�;iÞ¼e�kþcðtþ;iþ1�t�;iÞ: (4)

In Eq. (2), the probability of binding at time tþ;i is

pþðtþ;iÞ / kþc and the probability of unbinding at time

t�;i is p�ðt�;iÞ / k�. Combining all the bound and all the

unbound time intervals, we obtain

Pðftþ;i; t�;ig; cÞ / e�k�Tbe�kþcTukn�ðkþcÞn; (5)

where n is the number of binding or unbinding events
(which can differ by at most 1 and are therefore approxi-
mately equal for n � 1), and TbðuÞ ¼

P
n
i �bðuÞ;i is the total

bound (unbound) time interval with �b;i ¼ t�;i � tþ;i

(�u;i ¼ tþ;iþ1 � t�;i).

We maximize Pðftþ; t�g; cÞ over c via

dP

dc
¼ �kþTuPþ n

c
P ¼ 0; (6)

and obtain for the maximum likelihood estimate of the
particle concentration

1

kþcML

¼ Tu

n
or cML ¼ n

kþTu

: (7)

Hence, the best estimate of the concentration comes only
from the unbound intervals. Specifically, kþcML is the
inverse of the average duration of unbound intervals �u ¼
Tu=n. That is, kþcML is just the average binding rate
estimated from the data.

How accurate is the concentration estimate cML? To
obtain the uncertainty of the maximum likelihood estimate
we require the variance ð�cMLÞ2. For a given duration T the
last interval, possibly an unbound interval, gets interrupted.
To avoid this complication, we consider a fixed number of
intervals n (and consequently a variable duration T) in
Eq. (7). We proceed by using a general relation for the
variance of the model parameter (here ligand concentration
c) in maximum likelihood estimation. An upper limit of the
variance is given by the inverse of the Fisher information
(Cramér-Rao bound) [9,10]. In our case, the Fisher infor-
mation can be calculated as a simple second derivative of
the probability P of the data with respect to c, averaged
over the probability distribution of the time series at c0.

Furthermore, in the limit of a long time series, the Cramér-
Rao bound becomes an equality, and we obtain for the
normalized variance

ð�cMLÞ2
c20

¼ � 1

c20hd
2 lnðPÞ
dc2

ic0
¼ 1

n
; (8)

where we used P from Eq. (5) [11]. Hence, the normalized
variance of the maximum likelihood estimate of the true
concentration c0 is exactly the inverse of the number of
unbound intervals.
In contrast to our result Eq. (8), Berg and Purcell found

[5] [Eq. (1)]

ð�cBPÞ2
c20

¼ 2 ��b
T �p

¼ 2 ��b
�Tb

¼ 2

�nb
; (9)

where �nb is the average number of bound intervals in the
observation time T. Over a long measurement time, the
average number of bound and unbound intervals must be
the same, so the Berg and Purcell result has exactly twice
the variance of the maximum likelihood result.
Why is the maximum likelihood estimate more accurate

than the Berg and Purcell estimate? Berg and Purcell
assumed that concentration is inferred from the average
bound time, e.g., as obtained by time averaging the occu-
pancy of a single receptor or by spatial averaging over
many receptors. However, as evident from our maximum
likelihood estimate, only the durations of unbound inter-
vals contain information about the concentration. In con-
trast, the average bound time (or equivalently the average
unbound time) includes the durations of the bound inter-
vals, which add to the uncertainty in estimating the
concentration.
Our result, Eq. (8), for the variance in the estimate of the

concentration c0 also predicts optimal binding parameters
kþ and k�. Clearly, the more binding or unbinding events,
the lower the variance:
(i) For a given duration T the number of binding or

unbinding events is maximized for diffusion-limited bind-
ing kmaxþ ¼ 4Ds (obtained from the diffusive flux Jmax ¼
4Dsc0 to an absorbing circular patch of radius s).
(ii) Similarly, to maximize the number of binding or

unbinding events, the unbinding rate k� should be maxi-
mized. This implies (albeit unrealistically) that k� ! 1.
Under assumptions (i) and (ii), the maximum number of

intervals in an observation time T is given by

�n max ¼ T

��min
u

¼ kmaxþ c0T ¼ 4Dsc0T; (10)

leading to a variance

ð�cMLÞ2min

c20
¼ 1

�nmax ¼
1

4Dsc0T
: (11)

This result can be generalized to the more realistic case of
finite k�,
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ð�cMLÞ2
c20

¼ 1

�n
¼ 1

4Dsc0ð1� �pÞT ; (12)

where �p ¼ 1=ð1þ k�=4Dsc0Þ is the equilibrium proba-
bility for the receptor to be bound. Equation (12) can
readily be compared with the original Berg and Purcell
result [Eq. (1)], showing again that the maximum like-
lihood estimate is better by a factor 2.

The result for a single receptor, Eq. (8), can easily be
extended to M independent receptors, ð�cMÞ2=c20 ¼
1=ðM �nÞ; i.e., the variance in the estimated concentration
is the inverse of the total number of unbound intervals for
all M receptors. However, the concentration estimate can-
not become arbitrarily precise with increasing receptor
number, since the binding of particles is ultimately limited
by the arrival of particles by diffusion. For an absorbing
circular patch of radius s0, particles arrive by diffusion at a
rate 4Ds0c0. If individual receptors of effective radius s
bind particles at the diffusion-limited rate 4Dsc0, then the
number of receptors sufficient to bind all particles incident
on the patch is M � s0=s. Hence ð�cMÞ2min=c

2
0 �

1=½ðs0=sÞ �n�, implying that the variance in the concentration
estimate decreases at most linearly with the dimension of
the detecting surface [5].

The maximum likelihood concentration estimate Eq. (7)
is obtained solely from the duration of unbound intervals,
thus avoiding the additional uncertainty from the bound
intervals. What about the alternative scheme of estimating
the concentration from the number of binding events dur-
ing a time T, similar to photon counting by photoreceptors?
As shown below, this estimation scheme approaches the
maximum likelihood limit as the bound intervals become
short.

The average number of binding events (or equivalently
bound or unbound intervals) during a time T is given by

�n ¼ T

��u þ ��b
¼ T

1
kþc0

þ 1
k�

; (13)

which provides a concentration estimate cest for c0 in terms
of the observed n,

1

kþcest
¼ T

n
� 1

k�
or cest ¼ 1

kþ
1

T
n � 1

k�

: (14)

From the standard deviation of n, we obtain the standard
deviation of cest via

�cest ¼ dcest
dn

�n: (15)

According to Eq. (14), the derivative dcest=dn is given by

dcest
dn

¼ kþT
n2

c2est � kþT
�n2

c20: (16)

To obtain �n for a fixed duration T, we note that this is
proportional to the standard deviation �T for fixed n via
�n ¼ ðdn=dTÞ�T. Using �T ¼ nð ��u þ ��bÞ, yields
dT=dn ¼ ��u þ ��b, leading to dn=dT ¼ 1=ð ��u þ ��bÞ.

Based on the variance of unbound (bound) intervals
hð�uðbÞ � ��uðbÞÞ2i ¼ ��2uðbÞ, calculated from ��uðbÞ ¼ h�uðbÞi
and h�2uðbÞi ¼ ð1= ��uðbÞÞ

R1
0 dtt2 expð�t= ��uðbÞÞ ¼ 2 ��2uðbÞ, we

obtain for

ð�TÞ2 ¼ nð ��2u þ ��2bÞ or �T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð ��2u þ ��2bÞ

q
: (17)

Finally, using these results in Eq. (15) leads to

ð�cestÞ2
c20

¼ 1þ ð ��b��uÞ2
n

: (18)

This variance interpolates between the maximum likeli-
hood and the Berg and Purcell results for ��b < ��u and
exceeds the Berg and Purcell limit for ��b > ��u. To provide
some intuition for this result, we consider two limits:
(i) ��b � ��u: In this regime, the brief bound intervals do

not contribute appreciably to T. As a result, counting the
number of binding events in a time T is the same as
estimating the mean unbound time interval ��u. This is
exactly the maximum likelihood estimator [Eq. (7)].
(ii) ��b � ��u: In this regime, the bulk of the time T is

accounted for by the bound intervals. Therefore, the num-
ber of binding events measures the duration of the bound
intervals, not the duration of the unbound intervals, which
contain all the information about the concentration. (The
Berg and Purcell estimate is more accurate in this regime
because the fraction of time spent bound effectively mea-
sures the ratio of the bound to unbound time, and therefore
captures information about the duration of unbound
intervals.)
Our analysis has neglected additional noise in the con-

centration estimate due to ligand rebinding ([6], also the
appendix). However, cells have mechanisms for eliminat-
ing ligands which could suppress this noise [12,13].
Examples include ligand-receptor internalization [14,15],
and enzymatic degradation of ligands, e.g., of cyclic ad-
enosine monophosphate ligand by membrane bound phos-
phodiesterases in Dictyostelium discoideum [16]. In fact,
internalization can be very efficient; the transferrin recep-
tor and the low-density lipoprotein receptor are internal-
ized, respectively, 6.7 and 4.9 times faster than their
specific ligands can unbind [17].
With or without ligand rebinding, to what extent can real

cells exploit any of the above maximum likelihood
schemes to improve the accuracy of concentration sensing?
It is not clear mechanistically how cells could sense and
respond exclusively to the durations of unbound intervals
[Eq. (7)]. The potentially more practical scheme in Eq. (14)
of counting the number of binding events in a time T can
approach the maximum likelihood limit for ��b � ��u
(though too short a bound interval �b might imply low
ligand specificity [18] and potential signaling crosstalk).
Effective counting can be achieved by receptor adaptation
or desensitization following ligand binding. An intriguing
alternative is that receptors could bind ligand once and then
be internalized before ligand is released. While it is an
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open question whether cells actually implement this ‘‘op-
timal’’ strategy, we hope the perspective provided by maxi-
mum likelihood will prove useful in interpreting some of
the complexities of cellular signaling systems.
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Appendix: Maximum likelihood estimate with rebind-
ing.—Following Berg and Purcell, our derivation neglected
the rebinding of already measured particles. Such rebind-
ing increases the uncertainty in estimating the concentra-
tion [6,12]. As rebinding noise can be avoided by ligand-
receptor internalization or ligand degradation on cell sur-
faces [12,13], it does not contribute to the fundamental
physical limit. However, in practice many receptors do
release and potentially rebind their ligands.

The effect of local particle diffusion and hence possible
rebinding is to make the instantaneous rate of binding a
functional of the previous binding and unbinding events
(see Ref. [6] for details). The binding rate can thus be
written as kþcðt; ftþ; t�gÞ. The rate of unbinding remains
k�, so the maximum likelihood estimate of concentration
still comes entirely from the durations of the unbound
intervals.

What is the maximum likelihood estimate cML? The
probability for a time series is still given by Eq. (2) with
the change due to diffusion and rebinding occurring in
pþ / kþðcþ�ciÞ and pu:

puðt�;i; tþ;iþ1Þ ¼ e�kþcðtþ;iþ1�t�;iÞ�kþ
R

i
�cðt0Þdt0 ; (A1)

where we have expressed the particle concentration as

cðt; ftþ; t�gÞ ¼ cþ �cðt; ftþ; t�gÞ
¼ cþ �cðft� t�;i; t� tþ;igÞ; (A2)

and used the notation
R
i dt

0 ¼ Rtþ;iþ1
t�;i

dt0, �cðt0Þ ¼
�cðt0; ftþ; t�gÞ, and �ci ¼ �cðtþ;iÞ.

The terms can be gathered as before, leading to

Pðftþ; t�g; cÞ / e�k�Tbe�kþcTukn�knþ
Y
i

ðc

þ�ciÞe�kþ
R

i
�cðt0Þdt0 : (A3)

Importantly, all the �c’s depend only on the times of
events, not the value of c, so dð�cÞ=dc ¼ 0, yielding

dP

dc
/ �kþTuPþX

i

1

cþ �ci
P: (A4)

Setting the above derivative to zero yields an implicit
equation for the maximum likelihood estimate cML,

X
i

1

cML þ �ci
¼ kþTu; (A5)

where the sum is over all binding events, but each �ci
depends deterministically on all previous binding and un-
binding events. Using again that the variance of a maxi-
mum likelihood estimator is given by the inverse of the
Fisher information [9,10], we obtain

ð�cMLÞ2
c20

¼ 1P
ið1þ�ci=c0Þ�2

: (A6)
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