PRL 103, 157203 (2009)

PHYSICAL REVIEW LETTERS

week ending
9 OCTOBER 2009

Disorder Identification in Hysteresis Data: Recognition Analysis
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An approach for the direct identification of disorder type and strength in physical systems based on
recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples
uniformly distributed in the parameter space of the system is generated and is decorrelated using principal
component analysis (PCA). The PCA components are used to train a feed-forward neural network using
the model parameters as targets. The trained network is used to analyze hysteresis loops for the
investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model,
and polarization switching in polycrystalline ferroelectric capacitors.
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Random and disordered systems are ubiquitously
present in physics and materials science [1,2], and in fact
constitute the vast majority of real world materials.
Correspondingly, understanding of the emergence of mac-
roscopic deterministic properties from local dynamics is
one of the key challenges in condensed matter physics. The
development of physics has given rise to a number of well-
established statistical models describing local dynamics of
a system of interacting spins. Depending on the character
of the spins, interactions, and dimensionality of the system,
as described by corresponding Hamiltonians, a number of
universal behaviors emerge [3]. Remarkably, even the
simplest models have defied analytical description and
can be studied only numerically [4].

One of the crucial tasks in the physics of disordered
systems is the identification of the model and disorder
types in real materials, necessary to elucidate the micro-
scopic mechanisms underlying macroscopic behaviors. In
most cases, this information is based on matching the
known information on temperature and field dependence
of the ground state to a phase diagram of the corresponding
model. In addition, scattering techniques can be used to
elucidate the time and temperature dependence of the
corresponding correlation functions. Recently, significant
attention was directed towards disorder identification from
hysteresis loops and first-order reversal curves (i.e., fami-
lies of minor loops) [5—8] However, this approach lacks the
capacity to refine the model parameters based on experi-
mental input.

Here, we develop an approach for the quantitative analy-
sis of hysteresis loops to extract the type and strength of
disorder present in the system, and demonstrate it for an
example of a random-bond-random-field (RB-RF) 2D
Ising model. This neural network approach operates in a
manner reminiscent of ‘“recognition” in human brain,
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combining the universality of associative thinking with
the precision of a mathematical model.

As an example, we choose the generalized random-
bond-random-field Ising model. The Hamiltonian is de-
fined as

H(H) = J;8:8; + Y (h; + H)S, (1)
i.j i

where §; = *1 are the local spins, J;; are the nearest-
neighbor interactions, h; are the random fields, and H is
the external field. The nearest-neighbor interactions have
a Gaussian distribution with an average, J,, and width,
8J, ie. P = (8JV2m) exp(— (J;; — Jo)*/8J7).
The random-field components are assumed to have a
Gaussian distribution with width &h, ie., P(h;) =
(6h2m) " exp(—h?/8h?). For 8h =0 and 6J = 0, the
free energy Eq. (1) corresponds to the simple ferromag-
netic (Jy > 0) or antiferromagentic (J, < 0) Ising model.
For 6h = 0 and J, = 0 Eq. (1) corresponds to Edwards-
Anderson spin-glass model. Finally, for 6J = 0, Eq. (1)
corresponds to a random-field Ising model. The dynamics
of the system described by Eq. (1) has been extensively
studied as a function of dimensionality and disorder type
[2-4].

For given model parameters (J,, 6J, 6h), the evolution
of the system is studied on a 2D (10 X 10) field using
Glauber dynamics. The simulation yields a single hystere-
sis loop S(H) as a function of model parameters, (J,, 8J,
6h). To extract the model parameters from the hysteresis
curve, we utilize the nonparametric deconvolution method
based on a combination of principal value decomposi-
tion with neural network interpolation [9,10] as shown in
Fig. 1(a). The family of theoretical hysteresis loops
Sy (Jo, 8J, 8h) is generated in the parameter interval J, €
(Jmin’ Jmax)’ oJ € (BJmin: 5Jmax)s and oh € (5hmin’ Shmax)’
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FIG. 1 (color online). (a) Schematics of neural network rec-
ognition analysis. (b) Hysteresis loops for random-bond model,
6h =0, for Jy=2 and 6J =1, 2, 3, 4, 5. (¢c) Reconstructed
hysteresis loop using the 1st 6 eigenvalues for (Jy, 8J) = (1, 1)
(red), (1.5, 3) (green), and (3, 5) (blue). Shown are the original
hysteresis loop (solid) and the PCA reconstruction (dashed).

where 6J,,;, and Sh,y, are positively defined. Shown in
Fig. 1(b) is the example of hysteresis loops in random-bond
case, 6h = 0, illustrating systematic change in loop shape
as a function of model parameters.

The family of hysteresis loops in a given subset of
parameter space is decorrelated using principal component
analysis (PCA) [11]. In PCA, the set of N hysteresis loops
containing P points is represented as a superposition of the
eigenvectors w;, S, (H;) = a,,wi(H;), where a,; =
ai(Jo, 8J, 6h) are referred to as loading coefficients and
S.(H;) = S(Jy, 6J, 8h, H,) is the magnetization value for
field H; (separate for forward and reverse curves). The
eigenvectors w;(H) and the corresponding eigenvalues A
are found from the covariance matrix, C = SS”, where S is
the matrix of all experimental data points S,, ;. The rows of
S correspond to parameter variation (m defines total num-
ber of hysteresis loops in a set), and columns correspond to
field points, j =1, ..., P.

The eigenvectors wy(H) are orthonormal and are chosen
such that the corresponding eigenvalues are placed in
descending order, A; > A, >.... In other words, the first
eigenvector w,(H) contains the most information (defined
as the largest variation) within the data set, the second
contains the most ““informative’ response after subtraction
of the first, and so on. This process is highly reminiscent of
Gram-Schmidt orthogonalization, but with the norm de-
fined in a statistical sense. Mathematically, the eigenvalues
and corresponding eigenvectors are determined through
singular value decomposition of the S matrix. The number

of significant values, m, can be chosen based on the overall
shape of A.(k) dependence or on correlations in the pa-
rameter or real space (for SPM data) [12]. The comparison
between the hysteresis loops and PCA reconstruction is
shown in Fig. 1(c), illustrating that even for a small number
of PCA components the hysteresis loop shape can be
reproduced.

The determined loading vector is used to train a feed-
forward neural network (NN) using the set of
ai(Jo, 8J, 8h) as inputs and Jy,, 6J, 8h as desired outputs.
A trained neural network acts as a universal interpolator
that establishes a relationship between the hysteresis loop
described as a superposition of linearly independent
wi(H;) with coefficients a;(Jy, 8/, 6h), and model pa-
rameters J,, 6J, 6h. On the analysis stage, the same set
of wy(H;) is used to project unknown experimental or
theoretical hysteresis loops Sey,(H) on to a set of @,
values. The ;- are then fed into the trained neural net

to extract model-dependent J,, 6J, 6h. This recognition
approach thus solves the inverse problem of Eq. (1), i.e.,
identification of disorder from the hysteresis loop shape.

The recognition analysis was performed on a several two
parametric and a full RB-RF Ising model, when all three
parameters J,,, 6J and 6h were varied. Overall, 726 curves
corresponding to Jy=0,...,5 with step 0.5, 6/ =
0,...,5 with step 1, and 642 =0, ..., 20 with a step of 2
was generated. The principal components were used to
train a (10, 24, 2) feed-forward neural network with a
tansig transfer function in the hidden layer and a linear
transfer function in the output layer [13]. For optimal
fitting, the overall error decreased by ~1.5-2 orders of
magnitude compared to a random input. After training, the
validity of network training was checked using the simu-
lated array, and a comparison of the network output and
model parameters is shown in Fig. 2.

The number of relevant principal components and the
structure of the neural network was optimized using the
PCA component maps and convergence behavior, respec-
tively. The recognition results for the J, are shown in
Fig. 2. The reconstructed J, values show a relatively
broad scatter around the actual values (standard devia-
tion of ~0.5, corresponding to relative error of ~10%)
[Fig. 2(b)]. However, note that the reconstructed values
represent the collective effect of all possible 6J and 6k
values on the reconstruction.

The structure of corresponding error surfaces, defined as
Er(P) = (Psim - Preal)/(Psim + Preal) X 100%, is shown
in Fig. 2(c) and 2(d). Generally, the maximal relative error
is observed for extreme parameter values, and the dJ error
is independent of the actual 6J. For the chosen parameter
space, the reconstruction error is =0.5 for the 6/ changing
from O to 5. As a further example of recognition analysis,
several 2 parameter Ising models, including a frustrated
spin-glass model (J, =0 and varying 6J and 0h), a
random-bond Ising model (64 = 0) and a random-field
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FIG. 2 (color online). Neural network reconstruction of 3—
parameter Ising model for width-normalized data. (a) Recon-
struction plot for J,. Error bars are defined as the standard
deviation of reconstructed values. (b) Histogram for recognized
Jo values for actual J, = 0, 1, 2.5, and 4. The distribution of
reconstructed J, for (c) actual Jy = 1 and (d) actual Jy =4 as a
function of actual random bond, 6/, and random field, &h.

Ising model (6J = 0) were studied, illustrating reconstruc-
tion errors of ~3-5% over 2D parameter spaces (see
supplementary material) [14]

To establish the applicability of the proposed recogni-
tion method to an unknown statistical physics model, we
have studied the behavior of the p-model as shown in
Fig. 3(a). In this model, the RF-RB Ising model is defined,
and the random bonds are flipped from positive to negative
value with probability, p. Here, we chose J, equal to 1 and
6J of 0.1, 0.3, 0.7, 1, and 1.5. The resulting distribution of
exchange integrals is shown in Fig. 3(a). The probability of
a flip was varied from O to 1 with a 0.05 step. The resulting
hysteresis loops were then analyzed by a neural network
that had been trained using a family with J, spanning —2 to
2 and 6J spanning O to 2.

The results of the fitting for J, and 6/ are shown in
Fig. 3(b). The recognition fitting allows reconstruction of
the hysteresis loops in the interval of J from strong ferro-
magnetic to antiferromagnetic through the spin-glass state
(except for p = 1, for which sharp jumps in response are
observed). This indicated that hysteretic behavior of the p
model is equivalent to an RB Ising model with Gaussian
distribution of RB components with some effective ex-
change integral J.;(p) and distribution width 8J.(p).

The effective exchange integral J.i(p) decreases line-
arly with the percent chance of flip almost independently of
6J (except for 6J = 0, in which the choice of Glauber
dynamics leads to unphysically sharp features in the loop)
[Fig. 3(c)]. As expected, Joi = Jo(1 — 2p). The 8J(p)
depends on flip probability, p, approximately as 6/ =

(1-p)
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FIG. 3 (color online). (a) Distribution of exchange integrals in
the p model. (b) Modeled (solid line) and reconstructed (dotted
line) hysteresis loops for 6J = 0.3 and p = 0.2 (red), 0.5 (blue),
and 1 (green). (c) Reconstructed exchange integral J.;(p) and
(d) reconstructed RB disorder 8J.(p) vs flip probability, p. (e),
(f) Dependence of model parameters on the RB disorder 6J.

a + b(p — py)?* [Fig. 3(d)]. The RB disorder is minimal
and equal to the &J, at the edges of the interval and
maximal for p, = 0.5. The dependence of p, (flip proba-
bility corresponding to maximum disorder) and 6/ (p =
0) on &8J is shown in Fig. 3(e), and demonstrates the
expected behavior of 8J.4(p = 0) = 8J and p, = 0.5.
Finally, the maximum disorder 8/ (p = p) is compared
to 8J(p = 0) in Fig. 3(f), illustrating the role of bond flip
on the effective model parameters.

To explore the applicability of this approach to the
experimental data, we have chosen a polycrystalline ferro-
electric capacitor as a model system. The capacitor used in
this Study is a hlgh density PbZrO.SzTi0_4SO3 (PZT) films
prepared by chemical solution deposition, and has mixed
{001} and {111} orientation with columnar grains [15].
Spatially resolved studies of similar materials without top
electrodes have demonstrated that typically the polariza-
tion switching occurs uniformly within the grains [16] and
only 180° switching is observed [17]. These considerations
suggest that the salient features of system behavior can be
approximated by random-field random-bond 2D Ising
model, with the domains inside individual columnar grains
playing the role of Ising spins interacting through short
range electrostatic interactions, random electric fields due
to charged defects and interfaces playing the role of ran-
dom fields, and variability of grain-grain coupling and
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FIG. 4 (color online). (a) Comparison of the experimental
hysteresis loop for ferroelectric capacitor (red) and correspond-
ing fit for RBRF 2D Ising model (blue). (b) Comparison of the
first-order reversal curve families. Preisach density maps for
(c) capacitor data and (d) Ising model fit.

compositional inhomogeneities
random-bond component.

The macroscopic P — E hysteresis loops and a full set of
the first-order reversal curves (i.e., the family of minor
hysteresis loops starting from a polarized state) are shown
in Figs. 4(a) and 4(b). The corresponding Preisach den-
sities [18] are shown in Figs. 4(c) and 4(d). The use of the
recognition algorithm developed above has yielded model
parameters as Jo, = 1.4, 8J,p = 4.8 and Sh,, = 20.4.
To verify the network fit, the direct search of minimal error
over the training set yields J,, = 2, and 8J,, = 4 and
5hcap = 20, i.e., an identical result (within the error due to
the discrete nature of training set). Note the close agree-
ment between the experimental loop and the fit, as well as
good agreement between the corresponding first-order re-
versal curves and Preisach densities that offer a powerful
tool for comparison of hysteresis behavior. Hence, despite
the fact that the description of capacitor by Ising model is
nonideal, the overall features, including the distribution of
the reversible components and fraction of irreversible po-
larization are similar, suggesting a good agreement be-
tween the two.

To summarize, a universal approach for the analysis of
disorder type and strength in physical systems based on the
analysis of hysteresis loops is developed. The approach is
based on the neural network recognition of the decorre-
lated data set, where the network was first trained using a
large number of examples uniformly distributed in the
parameter space of the system. The operation of this ap-

playing the role of

proach is demonstrated for a 2D random-bond-random-
field Ising model, and generally allows for high-precision
(~2%—-5% error) for 2, and ~20%-30% error for 3 free
parameters. The approach is universal and can be applied
to other statistical physical models as well as types of
collected information, and thus represents an alternative
to traditional functional fitting using least mean square or
other algorithms.
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