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3Université Joseph Fourier, Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS,
25 Rue des Martyrs, BP 166, 38042 Grenoble, France

(Received 6 June 2009; revised manuscript received 22 September 2009; published 9 October 2009)

We report the experimental observation of strong multifractality in wave functions below the Anderson

localization transition in open three-dimensional elastic networks. Our results confirm the recently

predicted symmetry of the multifractal exponents. We have discovered that the result of multifractal

analysis of real data depends on the excitation scheme used in the experiment.
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Critical phenomena are of prominent importance in
condensed-matter physics. Criticality at the Anderson lo-
calization transition has been the subject of intensive theo-
retical research. Some important theoretical predictions
have been made, among which is the remarkable aspect
of multifractality of wave functions at this transition.
Numerical simulations support these predictions but also
raise more questions [1]. Recent experimental progress has
paved the way for the direct investigation of the Anderson
localization transition at the mobility edge in real samples
[2–4].

In this Letter, we report the experimental observation of
strong multifractality (MF) just below the Anderson tran-
sition. This observation is based on the excitation of elastic
waves in an open 3D disordered medium. The recently
predicted symmetry relation of the MF exponents [5] is
tested and confirmed. All results are compared with the
corresponding analysis of diffusive (metallic) wave func-
tions in the same network at a different frequency or with a
light speckle pattern generated by a strongly scattering
medium, showing a very clear difference between localiz-
ing and diffusive regimes. Our results not only highlight
the presence of MF in wave functions close to the mobility
edge, but also reveal new aspects of the MF character in
real experimental systems.

Before presenting the experimental results, we briefly
review some general aspects of MF and their implications
in the context of the Anderson transition. Multifractality
quantifies the strong fluctuations of the wave function. It
shows the nontrivial length-scale dependence of the mo-
ments of the intensity distribution. The dependence can be
investigated by varying the system size L, or alternatively,
if the system size is fixed, by dividing the system into small
boxes of linear size b and varying b. This property is
quantified by using the generalized inverse participation
ratios (GIPR)
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where IðrÞ is the normalized intensity (equal to
jc 2ðrÞj=R jc 2ðrÞjddr where c ðrÞ is the wave function)
and IBi

is the integrated probability inside a box Bi of

linear size b, with � � b � L where � is the wavelength.
The summation is performed on the whole sample, which
consists of n ¼ ðL=bÞd boxes, and d is the space dimen-
sion. By definition P1 � 1 and P0 � n.
At criticality, the ensemble averaged GIPR, hPqi, scales

anomalously with the dimensionless scaling length L=b as

hPqi � ðL=bÞ�dðq�1Þ��q � ðL=bÞ��ðqÞ; (2)

where dðq� 1Þ and �q are called the normal (Euclidean)

and the anomalous dimensions, respectively. For a normal
(extended) wave function, �q ¼ 0 for every q. A (single-)

fractal wave function with fractal dimensionD is described
by �ðqÞ � Dðq� 1Þ. For critical states �ðqÞ is a continuous
function of q that fully describes the MF.
MF describes the scaling of the moments of a probability

density function (PDF). The GIPR, defined in Eq. (1), are
proportional to the moments of the distribution function of
the eigenfunction intensities, so that Eq. (2) implies the
following scaling relation for the PDF:

P ðlnIBÞ � ðL=bÞ�dþfð�½lnIB= lnðL=bÞ�Þ: (3)

The second term in the exponent, fð�Þ, is called the
singularity spectrum, and is related to the set of anomalous
exponents �ðqÞ by a Legendre transform

�ðqÞ ¼ q�� fð�Þ; q ¼ f0ð�Þ; � ¼ �0ðqÞ: (4)

The singularity spectrum fð�Þ is the fractal dimension
of the set of those points r where the wave-function inten-
sity, IðrÞ, scales as L��. In mathematical terms, it shows
the coexistence of several populations of singularities in
the measure, which is the wave-function intensity for this
specific case. In the field-theoretical treatment of random-
Schrödinger Hamiltonians, MF implies the presence of
infinitely many relevant operators [6,7]. The functional
dependence of fð�Þ is an important and unique property
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of each universality class. In the extended regime, P ðlnIBÞ
is strongly peaked near � ¼ d, since the short-range
‘‘Gaussian’’ fluctuations [8] are washed out in the box
integration.

First order perturbation theory for an Anderson transi-
tion in 2þ � dimensions [9] (two is the critical dimension),
results in the ‘‘parabolic approximation’’ for the MF wave
functions [10,11]. This result, �q ¼ �qð1� qÞ, corre-

sponds to fð�Þ ¼ d� ð�� d� �Þ2=4�, where � is a
constant in the order of �. A similar approximation applies
to metallic (diffusive) states in three dimensions [12,13]
due to weak localization, although with � � 1. This is
sometimes called weak MF.

Recently, an exact symmetry relation

�q ¼ �1�q; (5)

was theoretically predicted for the set of anomalous ex-
ponents [5]. The numerical and analytical investigations of
the 3D Anderson model and certain random matrices sug-
gest that MF may exhibit itself also for off-criticial states
on both sides of the transition [14]. The MF concept was
extended to the boundaries where it behaves differently
with respect to the bulk [15].

Most of the available information about MF is based on
numerical investigations (See, e.g., [1,16–18] and referen-
ces therein). The only experimental attempt to observe
strong MF in wave functions so far is due to Morgenstern
et al. using scanning tunneling microscopy of 2D electron
systems [2]. Their observation of MF was hindered by the
presence of several eigenfunctions in the measurement and
by the limited size of their system.

We now use ultrasonic measurements to demonstrate
three different, but closely related, manifestations of MF:
(i) the probability density function (PDF), (ii) the scaling
of generalized inverse participation ratios (GIPR), and
(iii) direct extraction of the singularity spectrum. Our
experiments were performed on disordered single-
component elastic networks, made by brazing randomly-
packed 4.11-mm-diameter aluminium beads together [3].
The data presented here were obtained from a representa-
tive disc-shaped sample with a 120 mm diameter and
14.5 mm thickness. Two different configurations were
used for excitation. In the first excitation scheme a point-
like ultrasound source emits short pulses next to the sample
surface. In the second case the source was put far from the
sample so that a quasiplanar wave was incident on the
whole interface. In close proximity to the opposite inter-
face, vibrational excitations of the network were probed
with sub-wavelength-diameter detectors in the frequency
range of 0.2 to 3 MHz, where the wavelengths are compa-
rable to the bead size and the scattering mean free paths are
much less than the sample thickness [3]. The intensity at a
particular frequency was determined from the square of the
magnitude of the Fourier transform of the entire time-
dependent transmitted field in each near-field speckle.

The intensity was normalized by the total intensity in the
measured speckle pattern. The normalized speckle inten-
sity, IðjÞ was recorded at each point j on a square grid of
linear size Lg ¼ 55 points with a typical nearest-neighbor

spacing of 0.66 mm.
In the lower frequency band around 250 kHz, the ultra-

sound propagation is diffusive. A localizing regime is
observed in a 50% bandwidth around 2.4 MHz, where
the measured localization length in the sample is smaller
than the size of the analyzed speckle patterns (0:7Lg) and

almost equal to the sample thickness. A full description of
the experiment and a thorough comparison of previous
measurements with the self-consistent theory of localiza-
tion has been presented in [3].
We obtain the PDF from the histogram of the logarithm

of box-integrated intensities IBi
. We sample over 100

speckles in a 5% bandwidth around 250 kHz and
2.4 MHz for diffusive and localized regimes, respectively.
Two representative histograms are shown in Fig. 1 with
typical box sizes of b ¼ 9 and b ¼ 2 points for low and
high frequency measurements, corresponding to box sizes
of approximately two wavelengths in both cases. The PDF
for localized waves is clearly much wider than the one for
diffusive waves and the peak is shifted from the average
intensity. We have also plotted the peak-position and the
width of the histogram as a function of box size in the inset
of Fig. 1.
In principle, it is possible to extract the MF spectrum

from the PDF [19]. However, a box-counting analysis can
give more accurate results based on the scaling of the
GIPR. Similar to many numerical studies, we approximate
the expectation values by box sampling over a single or
multiple wave functions measured for a single realization
of disorder. This approximation is known as typical aver-

FIG. 1 (color online). Comparison between coarse-grained
PDF for localized and diffusive speckle intensities. The PDFs
are experimentally obtained from the histogram of the logarithm
of averaged intensities in the localized (thick bars) and diffusive
(thin bars) regimes. The black line shows a fit to a single
parameter log-normal distribution given by the parabolic ap-
proximation of Eq. (3). Inset: The peak position (symbols) and
the full width at half maximum (bars) of the intensity histogram
is plotted for localized (circles) and diffusive (squares) speckles
as a function of coarse-graining box size.
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aging. Typical averaging is unable to reveal information
that is related to statistically rare events [1]. In this ap-
proach, the system size is fixed and supposed to be large
enough relative to the box size. The approximate scaling
relation is derived by plotting the estimated GIPR, given by
Eq. (1), versus the box size b [20]. Note that although we
have examined three-dimensional samples, the Euclidian
dimension of our sampling space is two since the avail-
able data are taken just from the surface of the sample.
The effective system size is Lg over which the intensities

are normalized. By plotting Pq versus the box size in bi-

logarithmic scales [e.g., see the inset to Fig. 2(a)], power-
law behavior is found for q 2 ½�3; 4�, with the slope
yielding the scaling exponent �ðqÞ. The average anomalous
exponent is obtained by averaging the exponents measured
for several frequencies between 2.0 and 2.6 MHz and
subtracting off the normal part of the exponent 2ðq� 1Þ.
The standard deviation is taken as the error bar.

The anomalous exponents are plotted as a function of q
in Fig. 2(a). For comparison with the localized data, the
same numerical procedure was applied to a diffusive
speckle pattern, where the behavior is entirely different
(�q ¼ 0). In making this comparison, an optical diffusive

speckle pattern was used to capitalize on the best available
statistics.

The behavior of the anomalous exponents shown in
Fig. 2 provides unambiguous evidence for surface MF of
the localized ultrasound wave functions. This is the most
important result in this Letter. Note that MF is clearly seen
in these data, even though the localized wave functions in
our finite sample are near to, but not exactly at, criticality.
In addition, our observation of MF clearly supports the
predicted symmetry relation (5). Our experimental dem-

onstration of this fundamental symmetry, seen in a very
different system to the ones envisaged in [5], attests to the
universality of critical properties near the Anderson
transition.
Finally, we have extracted the surface MF spectrum

directly from the measurements [21]. In this method the
numerical error caused by the Legendre transform (4) is
avoided. To get enough statistics, 100 wave functions in a
bandwidth of 5% are used to estimate the MF spectrum for
several seven frequency bands between 2.0 and 2.6 MHz.
No systematic deviation is observed between the seven
spectra obtained in this frequency range. These spectra
are then averaged for each value of q 2 ½�6; 6� and the
standard deviation is considered as the error bar. The
results are summarized in Fig. 2(b). The peak of the MF
spectrum is shifted from two (the Euclidian dimension of
the measurement basis) by a value of 0:21� 0:02. For
comparison, the same procedure is applied to the optical
speckle using the same q range. No shift is observed for the
optical speckle.
The MF that is clearly seen in our data allows us to test

the deviation from the parabolic approximation. This is
characterized by the reduced anomalous exponents �q �
�q

qð1�qÞ . In our results, shown in Fig. 3(a), we see a deviation
of less than 20% for q 2 ½�3; 4�. The nonparabolicity of
the spectrum is very difficult to measure but it may have
important theoretical consequences. More precise investi-
gation of larger samples is needed to reliably confirm or
exclude the possibility of a small but significant deviation.
We have also investigated the dependence of the reduced

anomalous exponent at the symmetry axis, �1=2 ¼ 4�1=2,

on the frequency and type of excitation. The results are
presented in Fig. 3(b). We observe a robust presence of MF
for all frequencies between 1.7 to 2.9 MHz. The measured
anomalous exponent is larger for the point source illumi-
nation. This difference may be related to the number of
modes excited in each scheme. It has been previously

FIG. 2 (color online). (a) The measured anomalous exponents
�q are shown for localized ultrasound (full squares) and diffu-

sive light (open circles) speckles. The dashed line shows the
same data-points, mirrored relative to q ¼ 1

2 in order to check the

symmetry in the spectrum. The anomalous exponents are esti-
mated from the box-counting method. The slope of the GIPR
plotted versus the box size in bilogarithmic scales yields�q. One

example is shown in the inset for q 2 f�2;�1; 0; 1; 2; 3g and
f ¼ 2:40 MHz. (b) The average singularity spectrum is calcu-
lated for the ultrasound speckles (full squares) at frequencies
between 2.0 to 2.6 MHz. For comparison a singularity spectrum
for diffusive optical speckle (open circles), with the Euclidian
dimension, is extracted by applying the same box-counting
procedure.

FIG. 3 (color online). (a) The reduced anomalous dimension

�q � �q

qð1�qÞ is plotted versus q. Bars show the estimated error.

Deviation from a horizontal line corresponds to the deviation
from parabolic approximation. (b) The reduced anomalous di-
mension �1=2 is plotted versus frequency in the localized regime

for two excitation schemes: point-source (squares) and plane
wave (circles). The error bars represent the standard deviation of
the measured exponents that are averaged over each 0.1-MHz-
wide frequency band.
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discussed [22] that the overlap of two or more eigenmodes
shifts the peak of the singularity spectrum towards the
Euclidian dimension. Since the surface area of the sample
is larger than the localization length, neighboring localized
modes may coexist at the same frequency. These modes
can all be excited by a quasiplane wave while a point
source couples more efficiently to the closest mode.

Numerical analyses of bulk and surface MF for the
eigenstates of the Anderson tight-binding Hamiltonian on
a 3D cubic lattice at the metal-insulator transition have
predicted corresponding shifts of 1.0 and 1.6 from the
Euclidean dimension for the peak of the singularity spec-
trum [19,23]. Another numerical study for an equivalent
vibrational model on the fcc lattice shows a similar out-
come for bulkMF [18], indicating to the universality of this
phenomenon. It is not simple to explain the difference
between the available numerical results and our experi-
mental outcome. Several issues may play a role. Mode
overlap and the finite lifetime of modes due to open
boundaries are two of these issues. Most numerical studies
are done based on uncorrelated disorder, which is experi-
mentally hardly ever achieved. The uniform bead size in
our samples, which is comparable with the vibrational
wavelength, is a source of correlation. The presence of
correlation in the disordered potential may influence the
critical behavior and induce nonuniversality [24].

Despite the wealth of theoretical and numerical studies
on the Anderson transition in 2D and 3D for the
Schrödinger Hamiltonian in closed systems, critical prop-
erties of this transition for classical waves in an open
system have never been studied. Our system is specially
challenging due to its 3D nature, open boundaries and
presence of three polarizations for the elastic waves.
Specific properties of classical waves such as absorption
are yet to be investigated in the context of criticality. Our
results show that these important questions can now be
investigated experimentally, providing vital guidance for
new theoretical work. Our experiments reveal that the
concept of MF not only concerns critical states but is valid
as well around the mobility edge. This observation agrees
with recent theoretical investigations [14]. Mutual avoid-
ance of wave functions at large energy separations and
their enhanced overlap at small energy separations are
other important predictions of that theory, which can also
be verified by our experiment.

In conclusion, we have presented the first experimental
observation of multifractal wave functions below the lo-
calization transition. Our data validate experimentally the
predicted symmetry relation of the anomalous exponents.
Free from interactions and with the possibility of diverse
illumination and detection schemes, sound and light ex-
periments can provide a tremendous amount of useful
information for this field of research. We believe that our
observation of multifractality in classical waves will stimu-
late new theoretical and numerical investigations. On the

experimental side, this work highlights again the strength
of statistical methods for studying Anderson localization.
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