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Elastic Limit and Strain Hardening of Thin Wires in Torsion
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A theory for the size effect in the strength of wires under torsion is reported and compared with data
from thin copper wires. Critical thickness theory is solved rigorously and used to validate a useful
approximation which is combined with slip-distance theory modified for a finite structure size.
Experimental data with high accuracy around and above the elastic limit show excellent agreement
with the theory. The results strongly imply that the physical principle is the constraint that size, whether
grain size or structure size, puts on allowed dislocation curvature.
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It is well established in semiconductor technology that
thin structures such as epitaxial strained layers can be very
much stronger than bulk material [1-3]. Size-effect
strengthening is also observed in many other materials
and experimental situations. As well as the classic Hall-
Petch effect in which smaller grain sizes lead to higher
strength [4], size effects are seen in nanoindentation [5], in
twisting thin wires [6], bending thin foils [7], and com-
pressing small pillars [8]. Understanding size effects is
important at low strain in the vicinity of the elastic limit,
since structural failure (whether by fracture, creep or fa-
tigue) is usually a consequence of exceeding the elastic
limit. Understanding size effects is also important at high
strain in the context of metrology using indentation hard-
ness testing and nanoindentation.

Theories of these effects have generally invoked indirect
effects of the size. These include obstruction of dislocation
passage by grain boundaries leading to pileup [4,9], dis-
location annihilation at free surfaces leading to dislocation
starvation [10], and various forms of strain gradient theory
in which it is not the size per se but the gradient of plastic
strain that matters [6,7,11-13]. In fact, finite size in itself
can be sufficient to account directly for increased strength.
Here we show how finite size acts through critical thick-
ness effects [1-3,14], and through a closely related physi-
cally necessary modification of Taylor (forest) strain
hardening. In both cases the size effect arises through the
size constraint on dislocation curvature. We present experi-
mental data on the torsion of thin wires in good agreement
with these ideas.

Conrad considered plastic flow as the passage of dis-
locations through a crystal leading to an average plastic
strain dependent on the mean free path of dislocations. He
introduced this “slip-distance’ theory to explain the Hall-
Petch effect [15,16]. Then the plastic strain g, is given by
the density of mobile dislocations, assumed to be some
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fraction of the total density, p,, = Ap, and by their mean
free path X, assumed to be some fraction of the grain size,
X = &d, so that

ep = bip,, = bédAp, (1)

where b is the effective Burger’s vector of relevant dis-
locations and A and & are dimensionless fractions of the
order of unity. The flow stress is determined by forest
strain-hardening (often incorrectly called Taylor strain-
hardening) [17,18].

b8p1

o= aGb\/p = aG \ed 2)
where « is the Taylor coefficient, of the order of unity for
forest strain hardening. In this form, slip-distance theory
gives the observed Hall-Petch inverse-square-root depen-
dence of flow strength on grain size, but gives no depen-
dence on structure size. If we replace the grain size d by the
structure size & in Eq. (1) we obtain an inverse-square-root
dependence of flow strength on structure size, but we lose
the dependence on grain size. Experimental results show
that both are needed [19].

To incorporate both grain size and structure size in the
theory, consider an infinite line along which the linear
density or spatial frequency of randomly placed points X
is p, = x~! where x is the average interval. Let a second
set of points Y be added with p, = y~!. Starting from a
randomly chosen origin, the probability per unit distance of
encountering a point is p,, = p, + p, =x"' +y~ . So
between two free surfaces separated by the structure size h
and with grain boundaries separated by d on average, the
appropriate value of slip distance in Eq. (1)isx = &(h~! +
d~")"!. Similarly, for the average spacing between dis-
locations, /p in Eq. (2), becomes € = /p + L' =
JP + h™! + d~'. Using these modifications, and eliminat-
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ing stress by using o = Gg,, we express slip-distance
theory as

g = bxp, =b&(h™ " +d ) 'Ap

_ _ (€)]
gq = ab(\/p +h ' +d7")

gt &g = &

These three equations can be solved analytically for & (&).
Unlike Eq. (2), they predict a nonzero yield strength or
elastic limit at e;; = p = 0. For small structures, however,
it is not clear that Eq. (3) gives an adequate description of
the strength for the very first dislocation, nor what role
strain gradient might play, nor whether dislocation sources
can operate within the size constraints. A clearer picture of
the onset of plastic deformation and the operation of
sources is given by critical thickness theory [1-3], which
we now calculate explicitly for a wire in torsion.
Consider a wire of infinite length and radius a under
torsion, leading to a shear strain at radius r of kr where « is
the twist per unit length. Following Matthews [1], we
introduce a suitable dislocation and consider whether it
will extend indefinitely to relieve strain throughout the
length of the structure. This is an edge dislocation on a
diameter of the wire, shown in Fig. 1, curve (a), with a
Burger’s vector b in the z direction and with a glide plane
along the length of the wire. We assume that the crystal-
lography permits this. Under the torsional shear stress there
is a force on the dislocation which causes it to curve as
shown in Fig. 1, curve (b), and if the force is sufficient the
dislocation will extend indefinitely leaving a screw dislo-
cation along the axis of the wire as in Fig. 1, curve (c¢).
Following the Matthews approach [1-3], we calculate the
total elastic energy with and without the axial screw dis-
location, and critical values of k or a are the values for
which these energies are equal. The shear strain due to the
axial screw dislocation is —b/(27r) which diverges as r

FIG. 1. Part of a long cylinder or wire is shown. A diametrical
edge dislocation with Burgers vector parallel to the axis of the
cylinder is marked (a). Under torsion, it curves as shown (b),
keeping the ends of the segment perpendicular to the free
surfaces. Once the critical condition is reached, the dislocation
extends indefinitely by glide of the end segments, one of which is
shown at (¢). “Misfit” or “geometrically necessary” screw
dislocation is thus generated on the axis of the cylinder. At 5
times the critical condition, the easiest Frank-Read source,
shown at (d), can begin to operate.

goes to 0 and so we introduce a core cutoff radius r,. Then
the elastic energy per unit length without the dislocation is

1 1
U,==-G [a 2ar(kr)?dr = —wGK*(a* — r}). (4
27 ) e, 4
The energy with the dislocation is
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Equating U, and Uy and solving for «, we get the critical
twist per unit length as

K6=7ln—z—ln— (6)

where the approximate expression has ry = 0 except
within the logarithmic term and r, = b within it. There
is a massive literature on critical thickness theory and
many refinements can be applied to Eq. (6) [2]. For prac-
tical applications in strained-layer epitaxy, we introduced a
geometrical approximation, in which misfit dislocations
are favored at a depth & below a free surface if the inte-
grated excess strain-thickness product above /1 exceeds the
Burgers vector b [3,20]. From Eq. (6), approximating the
logarithmic term to 10 for @ ~ um, ro = b ~ A, we have
the integrated strain-thickness product at the critical twist
of

a a 1
j ich”zf ﬁfdr=ib, (7)
=0 d r=027a a 27T

which is close to b. This is useful, as the geometrical theory
was developed for flat surfaces [20] and it was not clear if it
is valid for curved surfaces as in a wire in torsion [14].

At the critical twist, the termination of the misfit dis-
location curves sufficiently to reach the surface at right
angles [Fig. 1, curve (c)]. If dislocation sources are re-
quired to operate, 4 or 5 times as much dislocation curva-
ture is required, as shown schematically in Fig. 1, curve
(d), so the critical strain-thickness product becomes ~4b
or 5b. A Frank-Read source is shown, for which the
condition is that each of the five quarter-circles making it
up requires an excess strain-thickness product of b [3]. The
theory above is unaltered except for rescaling the required
excess strain-thickness integral from b to 5b. We will use
both values: b for establishing the elastic limit, and 5b to fit
data at larger plastic strains where dislocation sources must
operate.

In previous wire-torsion experiments, Fleck et al. re-
ported no data below &, ~ 0.01, far above the elastic limit
[6]. They used 2 mm gauge lengths and they measured the
torque. To obtain data complementary to theirs, we use
much longer gauge lengths up to 1 m, and we use a load-
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unload technique instead of measuring the torque
[7,19,21]. Copper wires of diameter 10 and 50 um were
wound on a bobbin and annealed in a rapid thermal anneal-
ing furnace to give a range of grain sizes. Grain sizes were
measured by focused ion-beam secondary-electron scan-
ning microscopy, counting the number of grains along a
line of specified length on images of the cylindrical surface
of the wire or on images of flat surfaces made by focused
ion-beam milling. The average grain sizes reported here
are only approximate (*1 wm) but they are certainly good
enough for our purposes. Texture was also measured and
found to be substantially isotropic.

Lengths of wire were suspended vertically (L = 1 m for
50 um and L = 0.26 m for 10 wm diameter wire) and a
low-mass crossbar was fixed at the bottom. In order to
anneal out any strain-hardening due to handling, electrical
heating in a nitrogen atmosphere to about 300 °C—400 °C
was used before taking data. More experimental details are
given in the supplementary online material [22].

A turntable with a pair of pins engaging with the cross-
bar was used to twist the wires to various twist angles ¢, ,
the “load” condition. After each successive value of ¢,
the turntable was backed off until the wire hung freely. The
angles of the crossbar in this “unload” condition, ¢;, were
measured to an accuracy of 0.05 radians. The data plotted
in Fig. 2 are for a single 10 um wire and two 50 um wires,
one measured under the same conditions as the 10 um
wire (open triangles) and the other with some improve-
ments to the experiment for greater accuracy at the lowest
strains. The two steps in the latter dataset at 6 and 12 rad
are due to 10 min pauses under load to test for creep.

If ¢y = 0, the deformation at ¢; was wholly elastic or
reversible. Key points to note in Fig. 2 are that ¢; is indeed
zero within experimental error up to a clear elastic limit,
and the elastic limit is much higher in the thinner wire.
When there is plastic strain e, (r), it is easy to show that the
unload angle ¢y is

4L fa

Pu
a* r=0

rrey(r)dr (8)

To fit to the data, first, we add an intrinsic yield strength &
to the expression for g, [Eq. (3)] to take account of, e.g.,
the Peierls stress. Then we substitute ¢; for xL through-
out. We calculate the radius at which the elastic strain
equals the elastic limit implicit in Eq. (3), given by

Felm = i[80 +abla'+d "] )
eL

The radius above which the excess strain-thickness product
equals 5b is given by

106L
1/2k(a —ry)> =5b=ry=a— . (10)
eL

and according to critical thickness theory the plastic de-
formation e, (r) is constant for r from ry to a [14].
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FIG. 2. Load-unload data in torsion is shown for three wires,
(a) a 10 pum diameter wire with an average grain size of d =
11 pwm and length 0.26 m, (b) a 50 wm diameter wire with an
average grain size of d = 8.4 um and length 1 m (open tri-
angles), and (c¢) a 50 um diameter wire with an average grain
size of d = 21 pm and length 1 m. In the upper panel (a), the
data at very low strain is shown, with ¢, plotted against ¢; . The
data for (b) and (c) are offset by five radians on the ¢ axis for
clarity, and are multiplied by ten on the ¢ axis up to load angles
of 28 rad (a) and 17 rad (c) to show the elastic limit more clearly.
Elastic limits of ¢; = 16 rad (a) and 5 rad (c) are visible in the
data. The breakpoints at 6 and 11 rad in the data of (¢) are due to
pauses under load to test for creep. In the lower panel (b), the full
range of data is plotted as ¢; — ¢ against ¢; similar to a
stress-strain plot. The solid curves in both panels are fits using
Eq. (3) and (11) with parameter values given in the text.

Dislocation sources start to operate when ¢; = ¢;, such
that r,, = r. Single axial dislocations are favored under
the same condition when b instead of 5b is used in Eq. (10),
defining ¢, 5. Then, using the solution of Eq. (3) for & (&)
and substituting ¢, r/L for &,

4L Ter a
et = SE([* Postiar+ [* Pegtrair), 1)
Telm

et

This integral can be evaluated analytically, but the analytic
expression is much too lengthy to be useful. Putting num-
bers in, we therefore calculate the fits to data which are
given in Fig. 2. The magnitude of the Burgers vector of
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copper is taken to be 0.256 nm. The intrinsic strength and
the dimensionless parameters of the order of unity have
been adjusted to obtain the best fit (g = 1.8 X 1074, a =
1, the product A¢ = 0.4, and the coefficients of A~ and
d~!in Eq. (3) were also left at unity). The fit is excellent at
the higher strains [lower panel, Fig. 2(b)]. At the lowest
plastic strains [upper panel, Fig. 2(a)], we expect plasticity
to initiate at ¢, g rather than ¢, and the inhomogeneity of
the wire (distribution of grain sizes) will smooth what
would otherwise be stepwise plastic deformation.

It is unlikely that the fit of Fig. 2 is unique. Two
reservations should be noted. Critical thickness theory
was developed for epitaxial crystal on nearly perfect sub-
strate and explains the elastic limit and the onset of the
operation of sources. The application to the much lower-
quality structures here is speculative but seems to be
necessitated by the increased elastic limit of the thinner
wire. Unquestionably, a more comprehensive and detailed
microscopic characterization of the specimens before test
could help validate the model and perhaps help explain the
results at the lowest plastic strains. However, it is highly
significant that a good fit can be obtained with physically
plausible values for the fitting parameters in wires of differ-
ent diameters and in wires of the same diameter and differ-
ent grain sizes. It is also highly significant that the only
parameters describing the specimens are the Burgers vec-
tor of copper, and the measured diameters and average
grain sizes. This implies (a) that other metallurgical pa-
rameters such as texture are either unimportant or consis-
tent with our assumptions, and (b) that the theory should
work for other strain conditions such as foil bending or
simple tension and for other metals, without needing to
change the dimensionless parameters. There remain many
other unanswered questions, e.g., whether the theory pre-
sented here should be applied to precreep or to postcreep
data. Experiments over a wider range of grain sizes and
wire diameters, and to much higher strain and a range of
load times, are clearly urgent. Meanwhile, these results
already strongly imply that the physical principle deter-
mining the elastic limit and early strain hardening of a soft

metal is the constraint that size, whether grain size or
structure size, puts on allowed dislocation curvature.
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