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3van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65/67, 1018 XE Amsterdam, The Netherlands
(Received 17 July 2009; revised manuscript received 16 September 2009; published 9 October 2009)

We show that single-component fermionic polar molecules confined to a 2D geometry and dressed by a

microwave field may acquire an attractive 1=r3 dipole-dipole interaction leading to superfluid p-wave

pairing at sufficiently low temperatures even in the BCS regime. The emerging state is the topological

px þ ipy phase promising for topologically protected quantum information processing. The main decay

channel is via collisional transitions to dressed states with lower energies and is rather slow, setting a

lifetime of the order of seconds at 2D densities �108 cm�2.
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Remarkable progress in the studies of ultracold atomic
Fermi gases [1,2] has opened up prospects for creating
novel phases of fermionic atoms. Of particular interest is
the topological superfluid px þ ipy phase for identical

fermions in two dimensions (2D) [3], discussed in the
contexts of superfluid 3He and the fractional quantum
Hall effect [4,5]. The intense interest arises from the exotic
topological properties of the phase at positive chemical
potential �> 0 (i.e., in the BCS regime). In the presence
of vortices, the ground state becomes highly degenerate,
spanned by zero-energy Majorana modes on the vortex
cores [5,6]. The highly nonlocal character of these states
is expected to suppress decoherence processes and allow
this degenerate subspace to be used for topologically pro-
tected quantum information processing [7].

The px þ ipy topological phase has been predicted to be

the ground state of ultracold fermionic atoms interacting
via a p-wave Feshbach resonance [3]. However, the real-
ization of the px þ ipy phase in this way encounters seri-

ous difficulties. Away from a Feshbach resonance, the
superfluid transition temperature is vanishingly low.
While it may be increased on approach to the resonance,
in this case the system becomes collisionally unstable.
Fermions form long-lived diatomic quasibound states and
their collisions with the atoms cause relaxation into deep
molecular states, leading to a rapid decay of the gas [8,9].

In this Letter, we show that a stable topological px þ ipy

phase can be created with fermionic polar molecules with
large dipole moment. Ultracold clouds of polar molecules
in the ground rovibrational state have been obtained in
recent successful experiments [10,11]. Fermionic
40K87Rb molecules [10] have a permanent dipole moment
d ’ 0:6 D, and the dipole moment of 6Li133Cs fermionic
molecules should be close to 6 D, the same as for the
created bosonic molecules 7Li133Cs [11]. Being electri-
cally polarized, such molecules interact via long-range
anisotropic dipole-dipole forces, which has crucial conse-
quences for the nature of quantum degenerate regimes. In
particular, this provides the possibility of superfluid pairing

at sufficiently low temperatures in a single-component
Fermi gas. In 3D, the ground state of a gas of fermions
with dipole moments aligned in the z direction has a
pairing function which vanishes for pz ¼ 0 [12]. The 2D
Fermi gas of canted dipoles has a ground state with a
pairing symmetry of a similar form [13]. In both cases,
the presence of nodes in the order parameter makes these
phases distinct from the px þ ipy topological phase. Our

route to a stable px þ ipy phase is somewhat simpler than

other approaches [14].
Our idea is to use polar molecules confined to a 2D

geometry and dressed by a microwave (MW) field which is
nearly resonant with the transition between the lowest and
the first excited rotational molecular levels. As we describe
below, the dressed polar molecules acquire an attractive
1=r3 dipole-dipole interaction, which leads to superfluid
pairing of px þ ipy symmetry. Staying in the BCS limit,

the superfluid transition temperature can be made suffi-
ciently large and decay processes sufficiently slow to allow
realization of this phase in experiment. The effects of MW
dressing of polar molecules have been considered as a way
to tune the intermolecular potential [15] and to form a
repulsive shield for suppressing inelastic losses [16]. The
possibility of attractive interactions, which we consider
here, has very important consequences for the nature of
the phases that can arise and for the stability.
We consider a gas of fermionic polar molecules that are

tightly confined in one (z) direction and assume that the
confinement length lz still greatly exceeds the size of a
molecule. Then the translational motion of the molecules is
2D, but rotational eigenstates jJ;MJi are those of the 3D

molecule. The operator of the dipole moment d̂ can have
nonzero matrix elements only between states with different
rotational quantum numbers J. The transition dipole mo-

ment for J ¼ 0 ! J ¼ 1 is dt ¼ jh0; 0jd̂j1;MJij ¼ d=
ffiffiffi
3

p
,

with MJ ¼ 0;�1 and d the permanent dipole moment of
the molecule.
We then apply a circularly polarized MW field that

propagates in the z direction and has a frequency ! close
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to the frequency !0 of the transition between the states
j0; 0i and j1; 1i. If the Rabi frequency�R � dtE=@ and the
detuning � � !�!0 satisfy the inequality j�j, �R �
!0, then the rotating wave approximation is valid and the
MW electric field EðtÞ couples only the states j0; 0i and
j1; 1i. The resulting states may be represented in the
dressed-molecule picture, with wave functions [17]

jþi ¼ aj0; 0;Ni þ be�i!tj1; 1;N � 1i; (1)

j�i ¼ bj0; 0;Ni � ae�i!tj1; 1;N � 1i; (2)

where N labels the number of photons in the field, and a ¼
�A=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ�2

R

q
, b ¼ �R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

R þ A2
q

, and A ¼
ð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2

R

q
Þ=2. We will consider � * �R and

choose � > 0 such that the energy of the state jþi lies
above the energies of j�i and j1;�1i. If the MW field is
ramped on adiabatically, then the ground state j0; 0i
evolves into the state jþi, and all molecules can be pre-
pared in this state. As described below, relaxation to the
lower energy states, j�i and j1;�1i, can be very slow.

We derive the interaction potential between two mole-
cules within the Born-Oppenheimer approximation, in
which the molecules are assumed to be at fixed locations
with a separation r ¼ rðcos�; sin�Þ. At large separations,
the molecules are both in the state jþi. Each molecule has
an effective electric dipole moment deff ¼ � ffiffiffi

2
p

abdt,
which rotates in the plane of translational motion:

hþjd̂jþi ¼ deffðcos!t; sin!t; 0Þ. The interaction potential
at large distances is then

VðrÞ¼d1d2�3ðd1r̂Þðd2r̂Þ
r3

¼d2eff
r3

½1�3cos2ð!t��Þ�: (3)

Thus, the time-averaged interaction is attractive,

V0ðr ! 1Þ ¼ �d2eff=2r
3; (4)

and characterized by the length scale r� � Md2eff=2@
2,

where M is the mass of a molecule. The quantity r� is
defined analogously to the van der Waals length for atoms
and is a measure of the radius of the centrifugal barrier
experienced by the (fermionic) molecules.

At smaller separations, the dipolar interactions between
the molecules cause them to depart from the state jþi. This
occurs when the characteristic interaction energy d2t =r

3

becomes larger than the detuning @j�j, setting a new length

scale r� � ½d2t =ð@j�jÞ�1=3. We have found the resulting
Born-Oppenheimer surfaces using a full coupled channel
calculation containing all of the levels jJ;MJ;Ni. Similar
calculations are described in Refs. [15,16]. We choose a
positive detuning � > 0 and assume that the length scale of
the potential, r�, is larger than the confinement length lz so
that the interaction is 2D. The potential energy curves of
even parity are illustrated in Fig. 1, showing a potential
V0ðrÞ that has a repulsive core for r & r� and is attractive at
r * r� with a long-range 1=r

3 tail. As discussed below, the
repulsive core prevents low-energy particles from ap-

proaching each other at distances r & r� and suppresses
inelastic collisions, including ‘‘ultracold chemical re-
actions’’ recently observed at JILA for KRb molecules.
We now analyze the low-temperature phase of a 2D gas

of identical fermions interacting via the potential V0ðrÞ,
assuming that r� � r�. Because of the presence of an
attractive 1=r3 tail given by Eq. (4), one expects that the
Fermi gas is unstable to the formation of a superfluid state.
In the ultracold dilute limit, where the momenta of collid-
ing fermionic particles satisfy the inequality kr� � 1, this
tail provides a contribution /ð�kr�Þ to the scattering
amplitude. This is the so-called anomalous contribution
coming from distances of the order of the de Broglie
wavelength of the particles and obtained in the Born ap-
proximation [18]. It greatly exceeds the leading short-
range (r & r�) contribution which is related to the
p-wave scattering and is / k2 away from p-wave reso-
nances. Thus, omitting second order corrections, a detailed
behavior of the potential V0ðrÞ at distances r & r�, drops
out and the only important length scale is r�.
In our analysis of the superfluid phase, we confine

ourselves to the BCS weak coupling regime, where

kFr
� � 1 with kF ¼ ffiffiffiffiffiffiffiffiffi

4�n
p

being the Fermi momentum
and n the gas density. (We consider a uniform 2D gas; the
effects of a trap can be included within the local density
approximation.) The regularized gap equation is obtained
expressing the interaction potential through the zero-
energy vertex function �ðk; qÞ governed by [19]

�ðk; qÞ ¼ V0ðk� qÞ �
Z d2q0

ð2�Þ2
�ðk; q0ÞV0ðq� q0Þ

Eq0
; (5)

with Eq ¼ @
2q2=2M and V0ðqÞ being the Fourier transform

of V0ðrÞ. The gap equation then reads [2,20,21]:

�k ¼ �
Z d2q

ð2�Þ2 �ðk; qÞ
�q

2

�
tanhð�q=2TÞ

�q
� 1

Eq

�
; (6)

where �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq ��Þ2 þ j�qj2

q
is the energy of single-
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FIG. 1. Potential energy curve V0ðrÞ for two jþi state mole-
cules, computed for �R ¼ 0:25� (see text). Anticrossings with
other field-dressed levels of even parity occur at distances r�
r�, as shown in the inset.
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particle excitations and �> 0 is the chemical potential
which is equal to the Fermi energy EF ¼ @

2k2F=2M. To first
order, we replace �ðk; qÞ in Eq. (6) with V0ðk� qÞ. At T ¼
0, we put tanhð�q=2TÞ ¼ 1 and perform an analytical

analysis assuming that in the weak coupling limit the
main contribution to the integral in Eq. (6) comes from
momenta q close to kF. It shows that the dominant pairing
instability is in the channel with orbital angular momentum
l ¼ 1. The most stable low-temperature phase has px �
ipy symmetry, following from the fact that this phase fully

gaps the Fermi surface, in contrast to competing phases
[22]. A full numerical solution of the regularized gap
equation confirms this analysis. It further shows that j�kj
rises linearly for k & kF and approaches a constant
�EF expð�3�=4kFr

�Þ for k * kF.
In the 2D geometry that we consider, the critical tem-

perature Tc of a Fermi gas is set by the Kosterlitz-Thouless
transition. However, in the weak coupling limit, the
Kosterlitz-Thouless temperature is very close to Tc ob-
tained in the BCS approach [23]. For T ! Tc, we omit
j�qj in the expression for �q in Eq. (6) and obtain

Tc � EF expð�3�=4kFr
�Þ; (7)

where the numerical prefactor is of order of unity [24].
Thus, to obtain an achievable value of Tc, one requires kFr

�
to be not much smaller than unity. The BCS approach
assumes that the exponential factor in Eq. (7) is small
and Tc � EF. A limitation on the strength of the attractive
interaction is set by the condition of stability to phase
separation (collapse to a high-density gas). A full calcu-
lation of this limit requires a strong-coupling theory.
However, estimates (provided by Hartree-Fock theory)
suggest that the compressibility is positive for kFr

� <
3:7. Thus, the regime of moderately strong interactions
kFr

� � 1 is accessible.
The px þ ipy phase spontaneously breaks time-reversal

invariance (the phase px � ipy is its degenerate time-

reversed partner) [25]. It can be viewed as a state in which
the Cooper pairs have an orbital angular momentum of @
with respect to the z axis. The px þ ipy phase can exist in

one of two topologically distinct phases, depending on the
sign of the chemical potential [4]. The phase at�< 0may
be continuously deformed to the vacuum state; the phase at
�> 0 is topologically distinct from the vacuum and has
several very interesting properties. Most notably, the vor-
tices of this phase carry localized zero-energy states, de-
scribed by a Majorana fermion on each vortex core. These
lead to non-Abelian exchange statistics [5,6] and possible
applications for topologically protected quantum informa-
tion processing [7]. The superfluid of dipolar interacting
spinless fermions that we describe above has �> 0 and is
in the relevant topological phase.

The typical interatomic potential between atoms or
molecules (without the MW dressing field) has a short
range R0 � 1–10 nm. Thus, in 2D the scattering phase
shift is �ðkFR0Þ2 so that Tc � EF exp½�1=ðkFR0Þ2� is

vanishingly small. If the interaction strength is tuned close
to a Feshbach resonance [3] such that the transition tem-
perature strongly increases, then the particles have a sig-
nificant probability to be inside of the centrifugal barrier at
separations of the order of R0. Under these conditions, the
system is very susceptible to rapid losses arising from
collisional relaxation into deep bound states [8,9].
In contrast, for MW dressed molecules interacting via

the potential V0ðrÞ, the contribution kFr
� to the attractive

coupling strength provides a significant transition tempera-
ture Tc even far from the resonance associated with the
presence of a two-molecule bound state. Given that the
molecules have a small probability to be at separations
�r�, in this BCS regime one anticipates that the superfluid
phase is not susceptible to relaxation losses.
The dominant loss mechanism is from binary inelastic

collisions between jþimolecules, in which one or both are
transferred to the state j�i or j1;�1i, which (since � > 0)
lie lower in energy than jþi. For �R & �, the released
kinetic energy is �@� and can cause both molecules to
escape from the sample. The kinetic energy release re-

quires a momentum transfer of �@=�� with �� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=M�

p
. For ��=r� � 1, the particles cannot approach

each other sufficiently closely to allow the required mo-
mentum exchange, and one anticipates a reduction in the
loss rate. The same condition can be derived semiclassi-
cally as the condition of adiabatic motion in the potential.
To go beyond this limit and determine the loss rate for
�� � r�, we have solved the full two-body scattering prob-
lem involving states of even parity which, at infinite sepa-
ration, are ðjþi; jþiÞ; ðjþi; j�iÞ; ðþi; j1;�1iÞ; ðj�i; j�iÞ,
and ðj�i; j1;�1iÞ [the state ðj1;�1i; j1;�1iÞ is de-
coupled]. We calculate (numerically) the probabilities Pl

that two jþi-state molecules with relative angular momen-
tum l are scattered into any outgoing channel in which at
least one of them is in the state j�i or j1;�1i. This corre-
sponds to nonadiabatic transitions from the potential V0ðrÞ
to the other potentials shown in the inset to Fig. 1 [26].
Taking into account that two molecules are lost in each

inelastic collision and writing the molecule loss rate as _n ¼
��n2, for the 2D inelastic rate constant we obtain � ¼
4@=M

P
lPl. For incident energy chosen such that kR

� � 1,
we have � / ðkr�Þ2. The results for this quantity versus
r�=�� are shown in Fig. 2 for �=� ¼ 0:25 and kr� ¼ 1.
The general trend is a reduction of inelastic losses with
increasing r�=��, consistent with the semiclassical expec-
tations. However, in addition there is a dramatic modula-
tion of the inelastic scattering rate, arising from an
interference of incoming and outgoing waves in the scat-
tering potential. By tuning to r�=�� ’ 10:5, the rate con-
stant can be suppressed to � ’ 4	 10�4

@=M.
Thus, at a density n ¼ ð108–109Þ cm�2 of, for example,

7Li40K molecules, the lifetime of the gas is � � ð�nÞ�1 ’
2–0:2 s. The permanent dipole moment of 7Li40K in the
ground state was found to be 3.5 D [27], and for r�=�� ’
10:5 and �R ¼ 0:25�, the length scales are r� ’ 30 nm,
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r� ’ 200 nm. For kFr
� close to unity, we then get n ’ 2	

108 cm�2 and EF ’ 120 nK so that the transition tempera-
ture is Tc ’ 10 nK and the lifetime is �1 s. (For 40K87Rb,
the possible r� is rather small and the high densities
required for a sizeable Tc lead to rapid losses. The addition
of a shallow optical lattice will increase the effective mass
M, allowing Tc � 10 nK at n� 108 cm�2.)

We should avoid the presence of bound states of two
molecules in the potential V0ðrÞ; otherwise, three-body
recombination will lead to a rapid decay of the gas on
approach to the superfluid transition. A dimensional esti-
mate for the three-body decay rate gives ��1

rec �
ð@r�2=MÞðkFr�Þ4n2, which can be large for kFr

� ’ 1 and
reasonable densities. However, for �R ’ 0:25� (as used
above), the potential V0ðrÞ does not support bound states
for r�=�� & 14. Thus, for the considered value r�=�� ’
10:5, the three-body recombination is absent.

The formation of the px þ ipy superfluid phase should

be apparent in numerous observables. These include quan-
tities used to detect s-wave pairing in two component
Fermi gases, such as the density distribution, collective
modes, and rf absorption spectra [1,2]. The most striking
new features of the px þ ipy superfluid arise in the pres-

ence of quantized vortices, which may be generated by
rotation of the gas as in usual superfluids. rf absorption will
then show evidence for Majorana modes on the vortex
cores [28]. Ultimately, one would hope to probe non-
Abelian exchange statistics of these vortices [29].
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�R ¼ 0:25� and kr� ¼ 1 (see text).

PRL 103, 155302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 OCTOBER 2009

155302-4


