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This Letter presents a numerical study of a magnetohydrodynamic flow in a square duct with
electrically conducting walls subject to a uniform, transverse magnetic field. Two regimes of instability
and transition of Hunt’s jets at the walls parallel to the magnetic field have been identified. The first one
occurs for relatively low values of the Reynolds number Re and is associated with weak, periodic,
counterrotating vortices discovered previously in linear stability studies. The second is a new regime
taking place for higher values of Re. It is associated with trains of small-scale vortices enveloped into
larger structures, and involves partial detachment of jets from parallel walls. Once this regime sets in, the

kinetic energy of perturbations increases by 2 orders of magnitude.
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Introduction.—Liquid metal flows are of great impor-
tance for blankets of nuclear fusion reactors, such as
tokamaks [1]. The role of the blankets is to breed tritium,
to extract energy from the burning plasma, or both. The
blankets are composed of ducts of rectangular cross sec-
tion, where liquid metal, typically lithium or its alloys,
flows in the presence of a high, 5-10 T magnetic field. The
ducts comprising the blanket usually have electrically
conducting walls even if sometimes they are coated with
an imperfectly electrically insulating material. Insta-
bilities, transition, and turbulence in such flows are very
beneficial as they induce mixing of the fluid and thus more
efficient heat and mass transfer. These issues are crucial to
determine whether a particular design of a blanket can be
realized in practice.

Unfortunately, the understanding of the mechanisms of
instabilities and transition in the presence of high magnetic
fields is almost exclusively limited to flows in channels
rather than ducts, i.e., to flows between two infinite parallel
plates (see, e.g., [2,3] and references therein). In channels
transition takes place according to the bypass scenario in
which streamwise vortices play a key role. These studies,
however, are mainly of academic significance as the side-
walls of the ducts always affect the flows in a major way,
even more so than in nonconducting fluids.

In the presence of a strong, transverse magnetic field, the
flow in rectangular ducts with conducting walls becomes
highly anisotropic with an almost flat core, exponential
Hartmann layers at the walls transverse to the magnetic
field [4], and Hunt’s jets [5,6] at the walls parallel to the
field (Fig. 1). This anisotropy is owed to the magneto-
hydrodynamic (MHD) interaction, which shapes the veloc-
ity profile by means of the Lorentz force. The jets are of
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particular importance for the flow balance as they carry
either all or part of the volume flux depending on the ratio
of the electrical conductances of the Hartmann walls and
parallel walls to the conductance of the fluid.

The velocity profile shown in Fig. 1 is highly unstable
even for moderate values of the Reynolds number Re and
high values of the Hartmann number Ha [7-11]. According
to the asymptotic linear stability theory developed previ-
ously by Ting et al. [7], the critical value of Re for the
instability of this type tends to a constant, independent of
Ha as Ha — oo. The small-scale, Ting and Walker’s (TW)
vortices is not the only possible type of instability, how-
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FIG. 1 (color online). Base velocity profile for a square duct
with thin conducting walls for ¢ = 0.5 and for Ha = 200.
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ever. Priede et al. [11] demonstrated a rich variety of
instability patterns in Hunt’s flow (for perfectly conducting
Hartmann walls and electrically insulating parallel walls)
as Ha increases from zero. In particular, they have shown
that for low values of Ha instability occurs in the form of
streaks occupying the whole duct cross section, while TW
vortices are most unstable for Ha > 46.

Here, using numerical simulations, we go beyond the
linear stability threshold and present a new type of insta-
bility of Hunt’s jets, which is associated with their partial
detachment from the parallel walls. Once this pattern sets
in, the energy of perturbations grows by 2 orders of mag-
nitude. This type of instability persists for a wide range of
Re and appears to be a common feature of MHD flows with
Hunt’s jets.

Governing equations.—Consider the flow of a liquid
metal in a square duct whose main axis is in the
x direction in the presence of a magnetic field with induc-
tion By applied in the y direction (see Fig. 1). We assume
that the fluid is incompressible and that the magnetic field
induced by the fluid motion can be neglected so that the
quasistatic approximation holds [1]. The problem is gov-
erned by the set of dimensionless equations,

Re[d,u + (u - V)u] = —Ha’Vp + V?u + Ha’J X B,
(L

V-u=0, V-J=0, J=-V¢ +uxXB, (2

which express the conservation of momentum, mass and
electric charge, and Ohm’s law, respectively. The mass flux
is maintained constant. The velocity w = (u;, u,, u3), the
magnetic field B, the current density J, the pressure p, the
electric potential ¢, and time ¢ are normalized by U, B,
oUB, adB3U, SUB,, and 7, respectively, U being the
bulk velocity, 6 half the width of the duct, o the electrical
conductivity of the fluid, and 7, = 8/U the eddy turnover
time. The Reynolds number, Re = U /v, expresses the
ratio of inertial to viscous forces, while the square of the
Hartmann number, Ha = 8B(o/pv)'/?, measures the
relative strength of the electromagnetic forces versus vis-
cous ones.

The boundary conditions are the no-slip- and thin-con-
ducting-wall conditions at each solid wall:

J-n=cV¢p 7= =1,

3)

where n is the outward normal unit vector to a wall, V2 is
the Laplace operator in the plane of the wall, ¢ =
0,,8,,/08 is the wall conductance ratio, and o,, and §,,
are the electrical conductivity and thickness of the wall,
respectively.

The commonly used thin-conducting-wall condition [1]
is based on the assumption that the wall is thin compared to
the duct dimensions, i.e., §,, << 6. This implies that the
wall electric currents flow strictly in the plane of the wall

u =0, aty = =1,

but are allowed to enter (leave) the wall from (into) the
fluid.

Results.—The problem defined by Egs. (1)—(3) has been
solved using the CDP code developed at the Center for
Turbulence Research (Stanford/NASA-Ames) and up-
graded to model MHD flows. This code implements a finite
volume discretization on a collocated mesh. It is based on a
fractional step method, second order in space and time, and
has been extensively tested in turbulent flows. The Lorentz
force is discretized using a consistent and conservative
formulation (see [12-14] for details).

Simulations have been performed with periodic bound-
ary conditions in the streamwise direction, starting from an
initial condition consisting of random noise. After a tran-
sient period the flow reaches a statistically steady state,
which is then analyzed as described below.

The results are presented for a square duct with ¢ = 0.5,
which corresponds to all walls being quite good conduc-
tors, for Ha = 200, and for eight values of Re in the range
103-10*. Owing to the limit on computational resources it
has not been feasible to perform calculations for higher
values of Ha ~ 103-10* characteristic for fusion blankets,
as this would require a much higher numerical resolution.
Nevertheless, the value of Ha = 200 is sufficiently high
for the base velocity profile to exhibit a distinct core,
Hartmann layers and two well-separated Hunt’s jets in
the parallel layers (Fig. 1). For Ha = 200 the value of the
core velocity is 0.85, while the maximum velocity of the
jet is 2.7. For all the values of Re considered here,
Re.«/Ha = 50, which implies that the Hartmann layers
remain stable as they are in all the elements of fusion
blankets [4]. The instability comes from the shear and
the inflectional nature of the mean velocity profile in the
jet region.

The length of the computational domain has been set to
47, and the resolution to 512 X 100 X 100 grid points in
the x, y, and z direction, respectively. This ensured that
both the Hartmann layers and parallel layers are fully
resolved. Care has been taken to make the flow pattern
independent of the length of the computational domain.

The velocity is split into the mean, U, and the fluctuat-
ing, u/, parts, where = U, @’ = 0. The overbar denotes
time averaging. Similar definitions hold for other flow
quantities.

The three components of the kinetic energy density of
perturbations are

e; = l f u?dv,
Vv

where V is the volume of the computational domain. Their
mean values are shown in Fig. 2 against Re. For Re = 1000
(not shown on the graph) the intensity of perturbations
remains at the level of the numerical error ~107!6 even
for a very long calculation of up to # = 2000. The flow
remains laminar with no signs of instability. For 2500 =
Re = 3500 the value of e¢; for all three components in-

i = 1’ 27 37 (4)
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FIG. 2 (color online). Kinetic energy density of perturbations
averaged in time as a function of Re.

creases to 107°-10"%, while for Re = 3700 it jumps up by
2 orders of magnitude. This jump is accompanied by the
reduction of the maximum mean velocity and by the thick-
ening of the jet as shown in Fig. 3. The first instability is
associated with TW vortices, while the second with a new
type of instability involving partial detachment of jets from
parallel walls.

The instability for 2500 = Re = 3500 is characterized
by two rows of small-scale, almost periodic vortices, one at
each parallel wall. Each row consists of a succession of
clockwise (CW) and counterclockwise (CCW) rotating
vortices. Their magnitude is so small that they do not affect
the mean velocity profile, and thus this regime is close to
being linear.

For Re = 3700 a new type of instability occurs. The
instability has the form of long, essentially traveling

25 —laminar

* Re = 3000
- - Re = 5000
---Re = 10000

z

FIG. 3 (color online). Mean axial velocity profiles for several

values of Re.

waves, containing trains of small-scale vortices enveloped
into large structures and interrupted by partial detachment
of the jets from parallel walls (Fig. 4). The small-scale
vortices evolve in time but the large-scale structure prop-
agates downstream without changing its shape. The inten-
sity of disturbances increases by 2 orders of magnitude but
then remains almost unchanged up to Re = 10*, the high-
est value used in the calculations (Fig. 2).

The instability involving partial jet detachment occurs in
several stages, which somewhat resemble those for plane
wall jets in ordinary fluids [15]. Here, the quasi-2D behav-
ior is enforced by the magnetic field which elongates flow
structures in its direction. The CW-rotating vortices are
attracted to the inner-wall region being promoted by high
shear. The CCW-rotating ones are ejected into the outer jet
region. The CW-rotating vortices merge and, by gaining
momentum from the mean shear form a large CW-rotating
vortex shown with dashed lines in Fig. 4(c). The front of
this vortex is quite intense leading to the sweep of the fluid
from the core towards the wall. This structure is followed
by a strong burst of the fluid from the outer jet region into
the core accompanied by the partially merged CCW-
rotating vortices. The importance of the sweep is evident
in Fig. 5 where the third-order moment i} shows a strong
recirculation between the wall and the inflexion line in the
mean velocity profile.
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FIG. 4 (color online). Instantaneous contours of axial compo-
nent of (a) the total axial velocity u; and (b) the transverse
disturbance velocity u} for Re = 5000. (c) Instantaneous isolines
of the y component of the disturbance vorticity w5 = (V X u’),
(red or gray and blue or dark gray lines) and mean velocity
profile (black line). (c) is limited to the dashed box shown in (a).
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FIG. 5 (color online). Third-order moment 12’13 compared to
mean velocity profile for Re = 5000.

Figure 6 shows small-scale coherent structures in the
outer jet region as defined by the region of negative A,, the
second largest eigenvalue of the symmetric tensor S* + 2
[16]. Here S and € are, respectively, the symmetric and
antisymmetric parts of the velocity gradient tensor Vu. It is
seen that the structures are quasi—two dimensional (Q2D),
nearly aligned with the magnetic field. However, recircu-
lation of the mean flow in the duct cross section, through
(U,, Us) does take place with 2% intensity of the peak of
U, for Re = 5000 and 2.5% for Re = 10000. Thus we
conclude that the instability occurs in a Q2D manner with a
certain increase in the three dimensionality in the sweep
and burst regions. We leave the detailed analysis of the
mechanism of instability for the future.

To summarize, two types of instabilities of jets have
been identified in the simulation of an MHD flow in a
square duct with thin conducting walls. The first instability
occurs in the form of TW vortices, while the second is
associated with the formation of a large-scale structure
which involves sweeps and bursts of fluid at the walls
parallel to the magnetic field and a partial detachment of
the jets from the walls.
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FIG. 6 (color online). Coherent structures in the outer jet
region for Re = 5000, represented by isosurfaces of A, =
—0.015.

It should be noted that the second type of instability may
have been observed in the experiments [9,10] where a
sudden increase in the energy of perturbations by an order
of magnitude at certain values of Re has been reported.
However, owing mainly to the higher values of Ha and Re
and to insufficient data in these experiments, direct com-
parison with our results has not been possible.

Overall, the instability in duct flows is expected to be
very sensitive to the values of Re, as shown here, but also to
Ha and ¢ as demonstrated in Ref. [11], possibly leading to
more types of instability and transition scenarios. Far more
detailed studies are necessary to gain better understanding
of MHD flows in ducts.
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