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A free-boundary approach is applied to derive universal relationships between the excitability and the

velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier

discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of

a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically

obtained asymptotic relationships and interpolation formula connecting both excitability limits are in

good quantitative agreement with results from numerical simulations.
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Wave processes in excitable media play an important
role in a variety of different physical, chemical, and bio-
logical systems like cardiac tissue, catalytic surface re-
actions, semiconductor and gas discharge devices, or con-
centration waves in the Belousov-Zhabotinsky (BZ) re-
action [1–5]. Many basic features of waves propagating
in excitable media can be analyzed by means of a generic
two-component reaction-diffusion model of the form [5]

@u

@t
¼Dr2uþFðu;vÞ; @v

@t
¼Dvr2vþ�Gðu;vÞ; (1)

where the variables u and v represent the propagator and
controller species, respectively. Typically the nullcline
Fðu; vÞ ¼ 0 is a nonmonotonic function creating the pos-
sibility for undamped wave propagation. The second null-
cline Gðu; vÞ ¼ 0 is monotonic and intersects the first one
at only one point (u0, v0) as illustrated in Fig. 1. Below the
functions Fðu; vÞ and Gðu; vÞ are taken in the form used
previously [6–8]:

Fðu; vÞ ¼ 3u� u3 � v; Gðu; vÞ ¼ u� �; (2)

where the constant � determines the uniform rest state as
ðu0; v0Þ ¼ ð�; 3�� �3Þ, which is stable if � <�1.

If the propagator diffusion coefficient D<Dv and the
functions Fðu:vÞ and Gðu; vÞ satisfy certain conditions, a
spatially homogeneous solution uðx; y; tÞ ¼ u0 and
vðx; y; tÞ ¼ v0 in a two-dimensional medium can be un-
stable and develops into Turing patterns [9] or localized
particle like spots [10,11]. However, in models for neuro-
muscular tissues, catalytic surface reactions or BZ reaction
with fixed catalyst the controller species does not diffuse,
i.e., Dv ¼ 0. In this important case considered below
localized traveling wave segments also have been ob-
served, but only under a stabilizing feedback [12,13],
which, however, can be noninvasive [14].

To explain the appearance of such a solution, note that
the system (1) and (2) transforms into a bistable medium if
� ¼ 0, since then (ue, v0) represents another stable steady
state. Here ue is the largest root of the equation Fðu; v0Þ ¼
0. The bistable system is able to support stationary propa-
gation of a front, which corresponds to a transition from

one steady state to another [2,15]. The velocity of a planar
front depends on the controller value v0 and vanishes at
v0 ¼ v�. The front propagation is supported if the devia-
tion� � v� � v0 < �c. If� � �c the front velocity cp is

proportional to � and is given by

cpðv0Þ ¼ �
ffiffiffiffi
D

p
�: (3)

The constants �, v�, and �c are determined by Fðu; vÞ and
for Fðu; vÞ defined in Eq. (2), � ¼ 1=

ffiffiffi
2

p
, v� ¼ 0, and

�c ¼ 2.
If 0< � � 1, there is a single rest state (u0, v0). A

suprathreshold perturbation induces propagation of a
wave including abrupt transition from (u0, v0) to practi-
cally (ue, v0) (wave front), slow motion along the right
branch of the u-nullcline (wave plateau), abrupt transition
to the left branch (wave back), and recovery to the rest
state, as illustrated in Fig. 1. In the simplest case such a
wave has a planar front and a planar back, which have no
common points. If this wave is cut off on both sides, a wave
segment is created which contains two phase change
points, where the front coincides with the back. The seg-
ment will contract laterally and disappear at low excitabil-
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FIG. 1. Phase plane for the excitable system (1) and (2). Solid
lines show nullclines, while the dotted line represents the phase
trajectory corresponding to a propagating wave. The dashed line
corresponds to v ¼ v�.
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ity or evolve into two counter rotating spiral waves at high
excitability. Consequently, for a given medium excitability
there is a wave segment with a particular size and shape,
which is intrinsically unstable. In order to make this solu-
tion observable it has to be stabilized by an adequate non-
invasive feedback control [14]. Note that such stabilized
segments represent critical nuclei, from which spiral waves
can develop in the medium without the stabilizing feed-
back. Thus it is of great importance to study the relation-
ship between the shape of these nuclei and the medium
excitability. Up to now this study has been restricted to the
low excitability limit, where the wave segment size di-
verges [8,14]. Here a segment transforms into the so-called
critical finger, which can be viewed as a spiral wave with
infinitely large core. This pattern represents the universal
limit of spiral wave propagation derived in [6].

In this Letter, we demonstrate that a free-boundary
approach can be used to determine the velocity and the
shape of a stabilized wave segment within the whole
available excitability range. Moreover, a second universal
limit is discovered at the boundary between excitable and
bistable media. Here a wave segment transforms into a
motionless circular shaped spot. In this limit analytical
expressions are derived for the velocity and the size of
wave segments. In addition, an interpolation formula for
the segment velocity is proposed which is applicable
within the whole range between both excitability limits.

The free-boundary approach applied in this study is
aimed to simplify the underlying reaction-diffusion model
(1) and (2) [6–8]. First, the front and the back of the
propagating wave are assumed to be thin in comparison
to the wave plateau and, hence, the shape of a wave seg-
ment is determined by the boundary of the excited region,
e.g., the curve uðx; y; tÞ ¼ ðue þ u0Þ=2. It is suitable to
specify the shape and the normal velocity of the boundary
by the arc length s counted from the phase change point q
taking s > 0 at the front and s < 0 at the back [5].

Second, it is assumed that the normal velocity of the
boundary obeys the linear eikonal equation

cn ¼ cp �Dk; (4)

where k is the local curvature and cp ¼ cpðv�Þ depends on
the controller value vþ (v�) at the front (back) in accor-
dance with Eq. (3) [5,15,16]. At the phase change point the
normal velocity vanishes. However, the velocity of this
point in the tangent direction, ct, is equal to the transla-
tional velocity of the whole wave segment as illustrated in
Fig. 2. Simple geometry shows that

cpðv�Þ �Dk� ¼ ct cosð��Þ; (5)

where k� and �� specify the curvature and the normal
angle at the front (þ) and at the back (�) with respect to
the x axis.

Since the wave front is assumed to be thin, the controller
value at the whole front is constant vþ ¼ v0. Hence, the
velocity cpðvþÞ in Eq. (5) is also constant cpðvþÞ ¼

cpðv0Þ � c0. In contrast to this, the controller value at

the wave back is not constant. Indeed, due to Eqs. (1) and
(2) its spatial gradient along the propagation direction is
given by @v=@x ¼ ��GðueðvÞ; vÞ=ct. Under the assump-
tion � � �c, this gradient remains practically constant
along the wave plateau, where GðueðvÞ; vÞ �
Gðueðv�Þ; v�Þ � G�. Hence, v� can be written as

v� ¼ v0 þG��
ct

½xþ � x��: (6)

Here xþ and x� determine the locations of the front and the
back at the same distance y from the horizontal symmetry
axis, where y ¼ 0.
It is suitable to use the value c0 in order to rescale

velocities, e.g., Ct ¼ ct=c0, and space variables, e.g., S ¼
c0s=D, X ¼ c0x=D, Y ¼ c0y=D. Then, since k� ¼
�d��=ds, Eq. (5) transforms into the dimensionless ordi-
nary differential equation for the angle �þ

d�þ

dS
¼ �1þ Ct cosð�þÞ: (7)

Similar transformation taking into account Eq. (6) yields
the equation for the angle ��

d��

dS
¼ BðXþ � X�Þ

Ct

� 1þ Ct cosð��Þ; (8)

where

B ¼ G��
�2�3

: (9)

Equations (7) and (8) supplemented by obvious relation-
ships dY�=dS ¼ � cosð��Þ and dX�=dS ¼ sinð��Þ
specify the free-boundary problem for the traveling wave
segment. The solution to these equations determines the
shape and the velocity of the segment in dependence on the
single dimensionless parameter B characterizing the me-
dium excitability.
Note that Eq. (7) can be solved analytically and the

Cartesian coordinates of the front can be written as [8]

FIG. 2. Shape of a stabilized wave segment computed as the
solution of the free-boundary problem (7)–(9) for Ct ¼ 0:2 and
B ¼ 0:0367. The thick (thin) solid line depicts the front (back)
above the symmetry axis Y ¼ 0. Filled dot indicates the phase
change point q. Dotted line represents the circular shaped
motionless spot obtained for B ¼ 0.
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Xþ ¼ 1

Ct

ln
1

1� Ct cosð�þÞ ; (10)

Yþ ¼ ��þ

Ct

þ 2

Ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

t

p arctan
ð1þ CtÞ tan�þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

t

p ; (11)

that yields, e.g., the segment half-width W ¼ Yþð�=2Þ.
The more complicated Eq. (8) should be integrated

numerically in the reverse arc length direction starting at
S ¼ 0 with �� ¼ �=2, X� ¼ 0 and Y� ¼ W, and taking
into account that Xþ is determined parametrically by
Eqs. (10) and (11). Using a shooting method one must
vary the value of B until the corresponding solution sat-
isfies the second boundary condition, Y� ¼ 0, �� ¼ �.
Repetition of this process for different Ct yields the rela-
tionship between B and Ct shown in Fig. 3(a).

In the low excitability limit, where B ! Bc � 0:535, the
velocity Ct obeys the relationship derived in [7,8]

Ct ¼ 1� ðBc � BÞ=0:63; (12)

which is depicted by the dashed line in Fig. 3(a).
In this work we investigate the whole available range

0 � B � Bc. It is found that the linear law (12) fails to
describe the dependence Ct ¼ CtðBÞ in the limit B ! 0,
where the transition to a motionless spot is discovered.

In order to analyze this limit, note that in accordance to
the eikonal equation (4), a motionless spot should have a
circular shape with local curvature K ¼ 1. A slowly mov-
ing segment, e.g., shown in Fig. 2, has an elliptical-like
shape slightly stretched along the Y axis. Based on these
data we assume that for B � Bc the wave segment exhibits
a mirror symmetry with respect to the vertical line crossing
the phase change point, i.e.,

X�ð�SÞ ¼ �XþðSÞ; (13)

�þðSÞ þ��ð�SÞ ¼ �: (14)

Moreover, it follows from Eq. (10) that Xþ ¼ cosð�þÞ, if
Ct � 1. Substitution of Eqs. (13) and (14) into this ex-
pression yields X� ¼ cosð��Þ. Then Eq. (8) gives

d��

dS
¼ �1þ ðCt � 2B=CtÞ cosð��Þ: (15)

Differentiation of Eq. (14) and substitution of both
Eqs. (7) and (15) result in the following expression:

Ct cos½�þðSÞ� � ðCt � 2B=CtÞ cos½��ð�SÞ� ¼ 0: (16)

Because of Eq. (14) this equality is valid for any S only if

Ct ¼
ffiffiffiffi
B

p
: (17)

This square root asymptotics found in the limit B ! 0 is
shown in Fig. 3(a) by the dotted line. Its substitution into
Eq. (11) with �þ ¼ �=2 gives the half-width WðBÞ of
the wave segment represented in Fig. 3(b) by the dotted
line. Obviously, asymptotics (17) andWðBÞ based on it are
in good quantitative agreement with numerical data for

B � 1. The analytical expression for the half-width for
small B reads

WðBÞ ¼ 1þ �

4

ffiffiffiffi
B

p þOðBÞ (18)

and shows that for the motionless segment Wð0Þ ¼ 1.
Based on the asymptotics (12) and (17) obtained for the

two limiting cases an interpolation formula can be pro-
posed for the whole range 0 � B � Bc in the form

Ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ ð1� BcÞ

�
B

Bc

�
n

s
: (19)

If n ¼ 2:502 � 5=2, it correctly reproduces the asymp-
totics (17) for B ! 0 and the linear law (12) in the vicinity
of B ¼ Bc as shown by the solid line in Fig. 3(a).
Substitution of Eq. (19) into Eq. (11) with �þ ¼ �=2
gives an implicit interpolation formula for the segment
half-width W depicted by the solid line in Fig. 3(b).
It is important to compare the results of the free-

boundary approach to the numerical integration of the
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FIG. 3 (color online). Dimensionless velocity Ct and half-
width W of a stabilized wave segment vs the parameter B
obtained as a solution of the free-boundary problem (7)–(9)
(open circles) and from direct integration of the model (1) and
(2) (open triangles). (a) Dashed, dotted, and solid lines represent
asymptotics (12) and (17) and the interpolation formula (19) for
CtðBÞ, respectively. (b) These functions CtðBÞ are substituted
into Eq. (11) with �þ ¼ �=2 to obtain corresponding relation-
ships WðBÞ depicted by dashed, dotted, and solid lines.
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underlying reaction-diffusion equations (1) and (2) with
fixed � ¼ �1:6797, D ¼ 1, and 0< �< 0:002. The inte-
gration is performed with explicit Euler scheme with�x ¼
0:1 and �t ¼ 0:001. The computations are carried out
within a frame containing 500	 1200 nodes comoving
with a wave segment. To realize a stabilizing feedback
the control signal IðtÞ is taken to be proportional to the
coordinate yq of the phase change point

IðtÞ ¼ kfb½yqðtÞ �Wd�; (20)

where Wd is the desired half-width of the wave segment
and kfb is the feedback strength. In the vicinity of Bc this

signal obtained for kfb ¼ 5	 10�5 is used to change the

parameter � in accordance to � ¼ ��þ IðtÞ [14]. However,
for B � Bc it is more efficient to affect the diffusion
constant D taking D ¼ 1þ IðtÞ and using kfb ¼ 0:5.

The velocity and the half-width of stabilized segments
resulting from the numerical integrations of the Eqs. (1)
and (2) are also shown in Fig. 3 in comparison to the data
obtained in the framework of the free-boundary approach.
In Fig. 4 the boundaries of the stabilized wave segments
are compared to the solutions of the free-boundary prob-
lem. It can be seen that the segment velocity is predicted
with 5% accuracy within the whole excitability range. The
accuracy of the half-width predictions is better than 8% for
B< 0:4. However, for B � Bc the segment half-width
computed from the model (1) and (2) becomes remarkably
larger than the predicted one, since it diverges at B �
0:517< Bc ¼ 0:535. Higher-order correction terms are
responsible for this small deviation from the theoretically
predicted value Bc [6].

In summary, the translational motion of a stabilized
wave segment in an excitable medium described by the
generic reaction-diffusion model (1) with Dv ¼ 0 is ana-
lyzed in the framework of a free-boundary approach. It is
shown that for � � �c (sufficient condition) the free-
boundary problem can be reduced to the system of ordinary
differential equations (7) and (8) containing a single di-
mensionless parameter B characterizing the medium excit-
ability. In the low excitability limit, B ! Bc, which has
been analyzed earlier [6–8], the half-width W of the wave
segment diverges and it transforms into a critical finger.

Here the second universal limit, B ! 0, is discovered,
which corresponds to the transformation of a moving seg-
ment into a circular shaped motionless spot, that represents
the critical nucleus in bistable media. It is analytically
proven that for B � Bc the segment velocity Ct and the
half-width W obey the asymptotics (17) and (18), respec-
tively. The formula (19) describes the segment velocity
within the whole range between two excitability limits.
Since this formula does not depend on details of the local
kinetics, it can be applied to analyze the velocity and the
shape of wave segments in a variety of excitable media.
Moreover, parameter B can be expressed through experi-
mentally measurable characteristics of an excitable me-
dium such as the velocity and the duration of a propagating
pulse [17].
Note that traveling spots intensively studied in the sys-

tem (1) with Dv 
 D [10,11] differ very strongly from
wave segments described above for the case Dv ¼ 0.
However, the motionless spot corresponding to � ¼ 0 is
obviously the same in both cases. Thus, there are nontrivial
transitions in segment dynamics under variations of � and
Dv that are a challenge for future studies.
We thank the Deutsche Forschungsgemeinschaft (SFB
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FIG. 4. Boundary of a stabilized wave segment obtained from
direct integration of the reaction-diffusion model (1) and (2)
(solid lines) and as a solution of the free-boundary problem
(7)–(9) (dashed lines). (a) B ¼ 0:282, (b) B ¼ 0:334, (c) B ¼
0:385, (d) B ¼ 0:436, (e) B ¼ 0:488. Horizontal bar length 5.
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