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We consider a heteronuclear fermionic mixture on the molecular side of an interspecies Feshbach reso-

nance and discuss atom-dimer scattering properties in uniform space and in the presence of an external

confining potential, restricting the system to a quasi-two-dimensional geometry. We find that there is a

peculiar atom-dimer p-wave resonance which can be tuned by changing the frequency of the confinement.

Our results have implications for the ongoing experiments on lithium-potassium mixtures, where this

mechanism allows for switching the p-wave interaction between a K atom and Li-K dimer from attractive

to repulsive, and forming a weakly bound trimer with unit angular momentum. We show that such trimers

are long lived and the atom-dimer resonance does not enhance inelastic relaxation in the mixture, making

it an outstanding candidate for studies of p-wave resonance effects in a many-body system.
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The last several years have seen enormous advances in
the field of ultracold fermionic gases. The main progress
has been made in studies of the crossover from the
Bardeen-Cooper-Schrieffer superfluidity to Bose-Einstein
condensation of molecules (BCS-BEC crossover) in mix-
tures of two hyperfine states of the same atom (either Li or
K) close to an intercomponent Feshbach resonance [1].
Tunability of these systems has allowed one to investigate
the effect of a population imbalance on the BCS-BEC
crossover [2,3], study vortices in strongly interacting rotat-
ing fermionic superfluids [4], and explore other exotic
phenomena. The BCS-BEC crossover in a mixture of
different fermionic species and the formation of weakly
bound heteronuclear bosonic dimers are now the subject of
very active investigation. Naturally, most of the experi-
mental progress has been made for the alkali mixture of 6Li
and 40K. In particular, Taglieber and co-workers have
cooled the system to quantum degeneracy [5], interspecies
Feshbach resonances have been studied in a nondegenerate
system [6,7], and, recently, the formation of weakly bound
Li-K dimers at two of these resonances has been reported
[8,9]. The association of atoms into weakly bound dimers
is an important step toward obtaining ultracold dipolar
molecules, as has recently been demonstrated for fermi-
onic 87Rb-40Kmolecules at JILA [10]. The same technique
can be used to transfer bosonic 6Li-40K dimers to the
ground rovibrational state with a large dipole moment [11].

Although the dipole moment of weakly bound hetero-
nuclear dimers is negligible, they can strongly interact by
exchanging light atoms. For sufficiently large mass ratios
this exchange interaction dominates over the kinetic en-
ergy of the dimers and can even lead to their crystallization
[12]. On the few-body level the role of the mass imbalance
is distinctly visible considering the problem of two identi-
cal heavy fermions of massM interacting resonantly with a

light atom of mass m. For mass ratios M=m> 13:6 an
attractive effective potential mediated by the exchange of
the light atom dominates over the centrifugal barrier for the
identical heavy fermions. This leads to the Efimov effect—
the existence of an infinite number of bound trimer states
[13]. For smaller mass ratios the centrifugal barrier is
dominant. It excludes the Efimov effect and also sup-
presses recombination processes requiring three atoms to
approach each other to very short distances, which is
crucial for the collisional stability of the gas [14].
Amazingly,M=m ¼ 13:6 is not the only critical mass ratio
for this system. Recently, Kartavtsev and Malykh [15] have
shown that for positive interspecies scattering length a and
for M=m> 8:2 there is a weakly bound not Efimovian
trimer state, which for smaller mass ratios turns into a
p-wave atom-dimer scattering resonance.
In this Letter we consider a heteronuclear fermionic

mixture with M=m< 8:2 and study the scattering of a
heavy atom by a weakly bound heteronuclear molecule,
pointing out not only the practical relevance but also
uniqueness of the 6Li-40K case (M=m � 6:64). We calcu-
late s- and p-wave atom-dimer scattering phase shifts as
functions of the collision energy, taking into account the
finite width of the interspecies Feshbach resonance. We
show that for sufficiently small detunings the p-wave
atom-dimer interaction is resonant and should dominate
the dynamics of the atom-dimer mixture in the ultracold
regime. We also show that the atom-dimer p-wave reso-
nance can be tuned by confining the system to a quasi-two-
dimensional (2D) geometry, and one can even turn it into a
real trimer state. Finally, we predict that the resonant
p-wave atom-dimer interaction does not amplify the colli-
sional relaxation in the system. In particular, the lifetime of
a trimer can exceed several seconds. The relaxation in
s-wave atom-dimer and dimer-dimer collisions, more dan-
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gerous in the case of a narrow Feshbach resonance, can
also be suppressed by decreasing the magnetic field
detuning.

In order to solve the three-atom problem at hand we use
the zero-range model, which is well justified for ultracold
gases where the van der Waals range of the interatomic
potential, Re, is orders of magnitude smaller than all other
length scales. The method has been applied to three
unequal-mass fermions in free space near a wide
Feshbach resonance [16]. The effect of the finite width of
the resonance is described in Ref. [17] in the case of three
identical bosons. Mora and co-workers [18] have included
an external quasi-1D confinement in the treatment of the
three equal-mass fermion problem. The synthesis of these
techniques is outlined below.

Consider a pair of identical heavy fermions of mass M
interacting with a light atom of mass m via an s-wave
Feshbach resonance. We assume that the atoms are har-
monically confined in the z direction with the single par-

ticle Hamiltonians Ĥi ¼ �r2
Ri
=2MþM�2Z2

i =2 and

ĥ ¼ �r2
r=2mþm!2z2=2, where we set @ ¼ 1. In the

zero-range approximation the interaction acts only on the
‘‘boundaries’’ r ¼ R1 and r ¼ R2 leading to the 1=jr�
Rij singularities in the 3-body wave function�ðR1;R2; rÞ.
We introduce an auxiliary function fðR1;R2Þ ¼
limr!R1

4�jr�R1j�ðR1;R2; rÞ, which, in fact, contains

all the information about the state of the system as � can
be retrieved by solving the equation

ðĤ1 þ Ĥ2 þ ĥ� EÞ� ¼ fðR1;R2Þ�ðr�R1Þ=2�
� fðR2;R1Þ�ðr�R2Þ=2�;

(1)

where � ¼ mM=ðmþMÞ is the reduced mass. Below the
three-atom threshold, E<�þ!=2, the mapping f ! �
is unambiguous and is given by an integral operator, the
kernel of which is obtained from the Green function of the
left-hand side of Eq. (1). In the limit r ! R1 this integral
expression for � reduces to the form

�ðR1;R2; rÞ ! ð1=jr�R1j � K̂ÞfðR1;R2Þ=4�; (2)

where the integral operator K̂ gives a regular contribution
in the considered limit.

The singular and regular terms in Eq. (2) should match
the two-body scattering problem and, hence, are related by
the Bethe-Peierls boundary condition � / ð1=jr�R1j �
1=~aðEcÞÞ, where the energy dependent scattering length
defined as ~aðEcÞ�1 ¼ a�1 þ 2�R�Ec is evaluated at the
collision energy of the two atoms [17]. Here a is the
scattering length (at zero collision energy), and the length
parameter R� is inversely proportional to the width of the
Feshbach resonance. The collision energy, Ec, can be
obtained by separating the relative motion of the colliding
pair and subtracting the energies of all other degrees of
freedom from the total energy of the system. Thus, Ec can
be written as a differential operator acting on f:

Ê cf ¼
�
Eþ r2

R1

2ðMþmÞ �
ðM�2 þm!2ÞZ2

1

2
� Ĥ2

�
f:

Finally, the integro-differential equation for f reads

½�K̂ þ a�1 þ 2�R�Êc�fðR1;R2Þ ¼ 0: (3)

Equation (3) can be regarded as a two-body Schrödinger
equation describing the motion of a dimer and an atom,
fðR1;R2Þ being the corresponding wave function.
Let us now consider the atom-dimer scattering in the

uniform space,� ¼ ! ¼ 0. In this case the center-of-mass
motion separates, fðR1;R2Þ ¼ fðR1 �R2Þ, and it is con-
venient to work in the momentum representation, fðpÞ ¼R
fðRÞ expðipRÞd3R. Then Êc ¼ EcðpÞ ¼ E� p2=2�3

with �3 ¼ MðMþmÞ=ð2MþmÞ, and

K̂fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�EcðpÞ

q
fðpÞ þ 1

2�2

�
Z fðqÞd3q

p2 þ q2 þ ð2�=mÞpq� 2�E
:

The calculation of the atom-dimer scattering amplitude
from Eq. (3) then follows the standard method developed
for the ordinary Schrödinger equation in momentum space
[19]. In Fig. 1 we present the resulting s- and p-wave phase
shifts (top) and the corresponding partial scattering cross
sections (bottom) as functions of the atom-dimer collision
energy " normalized to the dimer binding energy j"0j
defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j"0j

p � a�1 þ 2�R�j"0j ¼ 0. We consider
the atom-dimer scattering below the dimer breakup thresh-
old, so that the total energy E ¼ �j"0j þ " < 0. On the
left we present the results for the mass-balanced case, and
we see that the s-wave contribution to the scattering is
always dominant. On the right, in the case M=m ¼ 6:64,
solid lines show the phase shifts and scattering cross
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FIG. 1 (color online). The scattering phase shifts and partial
cross sections as functions of the atom-dimer collision energy
normalized to the dimer binding energy for the mass-balanced
case (left) and for the case M=m ¼ 6:64 (right). In the top-right
graph we also present the dependence on the width of the atomic
resonance. Dashed, dotted, and dash-dotted lines stand for
a=R� ¼ 16, 4, and 1, respectively.
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sections in the limit of a wide resonance, or very small
detunings (a � R�). One can clearly see that the p-wave
contribution dominates everywhere except for very small
". The p-wave phase shift crosses the unitarity line �p ¼
�=2 at " � 0:1j"0j and stays very close to it at larger
collision energies.

On the top right in Fig. 1 we present the scattering phase
shifts in the case of a Feshbach resonance of finite width.
We see that the narrower the resonance or the larger the
detuning, the weaker the atom-dimer interaction (attractive
p-wave as well as repulsive s-wave). This is consistent
with the fact that the atoms forming the dimer spend more
time in the closed-channel state, the interaction of which
with the other atom is not resonant.

At this point we can conclude that for sufficiently small
detunings R�=a a mixture of K atoms and K-Li dimers
should behave quite differently compared to the case of an
atom-dimer mixture in which dimers are composed of
equal-mass atoms. The resonant character of the p-wave
atom-dimer interaction can be demonstrated, for example,
by colliding with each other two cold clouds of atoms and
molecules and by measuring the angular distribution of
scattered atoms or molecules [20].

We see that the atom-dimer scattering properties are
sensitive to the detuning R�=a. However, for the Li-K
mass ratio, increasing this parameter can only weaken
the atom-dimer interaction. Aside from the scaling with
j"0j, is it possible to shift the position of the p-wave atom-
dimer resonance down and eventually turn it into a trimer
state by changing parameters of the system? According to
Ref. [15] this can be achieved by increasing the mass ratio
to the value M=m � 8:2. Another approach, not involving
changes in atom masses, is based on the following facts. In
the 2D case the K-K-Li system with zero-range interac-
tions has one bound trimer state with unit angular momen-
tum [21], and in the case of mixed dimensions, when K is
two-dimensional and Li is three-dimensional, the 3-body
system exhibits the Efimov effect; i.e., it supports an infinte
number of trimer states [22,23]. Therefore, one can assume
that a gradual increase of an external quasi-2D confine-
ment does shift the position of the atom-dimer resonance
and turns it into a trimer state.

To answer the question of how strong the confinement
should be, we return to Eq. (3) and solve it in the inhomo-
geneous case. Note that all the operators in Eq. (3) con-
serve the planar center-of-mass momentum as well as the
planar angular momentum l, and, therefore, f essentially
depends only on three coordinates: fðR1;R2Þ ¼
fðZ1; Z2; j�1 � �2jÞ expðil�Þ, where Zi and �i are the
axial and radial components of Ri, and � is the angle of
�1 � �2. Besides, in the case � ¼ ! the center-of-mass
motion in the axial direction separates and the configura-
tion space of Eq. (3) becomes two-dimensional.

Figure 2 shows the trimer formation thresholds for ! ¼
� (solid line) and ! ¼ 0 (dashed line), and we introduce

the heavy atom oscillator length, l0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
M�

p
. In both

cases the critical confinement length for R� ¼ 0 is given by
l0=a � 1:3 and then rapidly decreases with R�. The close-
ness of the two curves for a & 2l0 is explained by the fact
that the dimer size, �a, is smaller than the light atom

oscillator length, l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�=m!

p
, and the dimer and trimer

states are fairly insensitive to the light atom confinement.
Accordingly, this part of the diagram should be quite
universal for 0 � ! & �.
On the negative side of the resonance the two cases

differ significantly. For finite!, there always exists a dimer
state whose size exponentially increases with the detuning
jl0=aj (a < 0). The problem then becomes essentially 2D
(cf. [21]), and for sufficiently small R� there is one trimer
state with unit angular momentum (vertically shaded area).
In the case ! ¼ 0 there exists a dimer threshold (dotted
line) where the dimer size diverges and the resulting
mixed-dimensional 2D-3D system exhibits the Efimov
physics [22,23]. We find, however, that the corresponding
region in the vicinity of this line is 7 orders of magnitude
narrower than the horizontally shaded area, which indi-
cates a single trimer state.
Let us now discuss realistic values of a, R�, and l0,

achievable in ongoing experiments. Hereafter we make @

explicit. For the resonance at B ¼ 114:47ð5Þ G in the
j1=2;þ1=2iLi � j9=2;þ9=2iK mixture, believed to be
one of the widest of the 6Li-40K system, the width is �B ¼
1:5ð5Þ G [7]. With the background scattering length abg ¼
3 nm and �rel ¼ 1:57�B for the difference in magnetic
moments of the closed and open channels, we have [17]
R� ¼ @

2=ð2�abg�rel�BÞ ’ 100 nm. The same value of l0
is achieved for the confinement frequency � �
2�� 25 kHz. Then the trimer formation threshold is
reached for a � 400 nm. Note that Re � 2:2 nm and the
zero-range approach is well justified.
It is well established [24] that atomic systems close to a

p-wave resonance suffer from very strong losses due to the
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FIG. 2. Phase diagram of the K-K-Li system in an external
quasi-2D confinement. The solid (dashed) line corresponds to
the trimer threshold in the case � ¼ ! (! ¼ 0). Three atoms
form a bound state in vertically (horizontally) shaded areas. The
dotted line represents the dimer formation threshold in the case
! ¼ 0 (see text).
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relaxation to deep molecular states. Because of the cen-
trifugal barrier the size of a p-wave bound state is of the
order of Re, independent of the detuning. Therefore,
p-wave molecules easily relax to deeper bound states of
approximately the same size when colliding with another
atom or molecule. The two-body relaxation rate constant is
then of the order of �rel / @Re=m. Translating this picture
to our p-wave atom-dimer resonance, we observe that the
range of the atom-dimer potential, given mostly by the
exchange of the light atom, is 1 or 2 orders of magnitude
larger than Re. However, the relaxation rate constant �rel

does not scale accordingly as there is only a single trimer
state and there are no deeper states of the same size to
which it can relax. Thus, the main loss channel in the gas
should be the relaxation to molecular states of the size Re.
This mechanism is responsible for the decay of a single
trimer, the rate of which we will now discuss. It is also
important for the atom-dimer mixture close to the p-wave
resonance as atom triples spend a lot of time in this bound
or quasibound trimer state.

Consider a K-K-Li trimer in the case R� ¼ 0 and a� l0.

For hyperradii Re 	 � 	 a its wave function reads � �
��p�1=a�pþ2�ð�̂Þ, where �ð�̂Þ is a normalized function
of hyperangles and �p � 0:198 corresponds to the heavy-
heavy-light three-fermion problem with M=m ¼ 6:64 and
p-wave symmetry [14,16]. The decay rate equals 1=� ¼
PðReÞ�mic, where PðReÞ � ðRe=aÞ2�pþ4 is the probability
to find all three atoms in the microscopic region � & Re,
and �mic � @=mR2

e represents the order of magnitude esti-

mate of the relaxation rate once the atoms are confined to
this region (cf. [23]). In the case of finite R� it follows from
the coupled-channel analysis that the open-channel wave

function �ðR1;R2; rÞ � fðR1;R2Þ=4�jr�R1j is al-
ways accompanied by the closed-channel amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�=4�

p
fðR1;R2Þ, and estimates of the normalization in-

tegral calculated with these functions show that the latter is
dominant at �� jR1 �R2j 	 R�. This means that at � 	
R� the three-atom problem reduces to the problem of a
noninteracting atom and a closed-channel (bare) molecule.
Accordingly, in the case Re 	 R� 	 a the trimer de-
cay rate is a product of three factors, 1=� ¼
PðR�Þ�micðRe=R

�Þ5, where the last factor gives the proba-
bility for a bare molecule and an atom with unit total
angular momentum to approach each other from dis-
tances �R� to distances �Re. Similar analysis can be
performed for other values of a, R�, and l0, and substituting
realistic numbers for Li-K mixtures, one obtains that the
trimer decay rate is 3 to 5 orders of magnitude lower
than the dimer binding frequency and can lead to trimer
lifetimes of order 1 s. In contrast to the Efimov case, the
binding of these purely long-range trimers comes from
distances of the order of the dimer size, whereas at
short distances the three-atom dynamics is dominated by
the centrifugal barrier. We see that the p-wave atom-
dimer resonance does not compromise the lifetime of the
system.

Independent of the proximity of the p-wave atom-dimer
resonance, the lifetime of the mixture is likely to be limited
by the relaxation in s-wave atom-dimer and dimer-dimer
collisions. A detailed discussion of these processes in the
case R� ¼ 0 can be found in Ref. [14] and can be gener-
alized to the case of finite R� in the same way as outlined
above. In particular, in the case Re 	 R� 	 a the 3D
s-wave atom-dimer relaxation rate constant equals �rel �
ð@Re=mÞðR�=aÞ5:04, and we get a similar power law depen-
dence for the dimer-dimer channel with a slightly lower
exponent. We see that for small detunings from the
Feshbach resonance; i.e., for R� 	 a, these rates are
strongly suppressed. Thus, also in this respect the mixture
of K atoms and K-Li dimers holds promise as a unique
long-lived system in which resonant p-wave interactions
can be observed.
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