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In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions

may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the

magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic

dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a

spatially constant light shift arising from the latter two interactions. Experimental prospects of such

lattices used with a blue magic wavelength are discussed.
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Quantum absorbers trapped in well-designed electro-
magnetic fields are the excellent candidates for future
optical atomic clocks projecting uncertainties below
10�18 [1,2], which represent the state of the art of the
precision spectroscopy [3,4]. While these atom traps pro-
vide long interrogation time and the Lamb-Dicke confine-
ment of atoms necessary for ultrahigh resolution
spectroscopy, the relevant trapping fields impose an inher-
ent fundamental limit on measurement uncertainties due to
the atomic multipolar [1,5–7] and hyperpolarizability ef-
fects [2,8]. It is of note that the detection and control [9–11]
of the electric quadrupole interactions of ions with their
trapping fields triggered an essential breakthrough for ion
clocks operating on the S-D clock transitions to achieve the
uncertainties of 10�15 and even below [3,12].

Recently, it was pointed out that the multipolar interac-
tions of atoms with optical lattices may introduce a spatial
mismatch of the lattice potentials in the clock transition,
thus affecting the optical lattice clocks’ uncertainties at
10�16 [13]. This inferred the slight breakdown of the
original concept of the magic wavelength that cancels out
the quadratic light shift in the clock transitions [2]. In this
Letter, we discuss strategies to minimize the light shift
uncertainties in optical lattice clocks by considering the
electric dipole (E1), magnetic dipole (M1), and electric
quadrupole (E2) interactions of atoms in a standing wave.
For specific lattice geometries, we show that the magic
frequency !m of a lattice clock can be defined so as to
eliminate the spatial mismatch of the lattice potentials by
allowing a spatially constant differential light shift that can
be evaluated down to 10�18. Consequently, optical lattice
clocks free from atomic-motion-dependent clock shift are
realized. We discuss experimental prospects for the 1S0 �
3P0 clock transition of Sr atoms. In particular, combined

with a blue-detuned magic wavelength [14], the proposed
lattice geometry closely simulates the Paul trap employed

in ion clocks [1], thus pushing the lattice clocks’ uncer-
tainty towards the 10�18 regime.
Optical lattices consist of a spatially periodic light shift

formed by an interference pattern of electromagnetic (EM)
waves. The simplest configuration is a one-dimensional
(1D) lattice created by a standing wave that can be taken
to be E ¼ ezE0 sinky cos!t with frequency ! and wave
number k ¼ !=c ¼ 2�=� as shown in Fig. 1(a). The
Maxwell equation r�E ¼ � 1

c
@B
@t infers the correspond-

ing magnetic field to be B ¼ �exE0 cosky sin!t, suggest-
ing the spatial function is a quarter of the wavelength � out
of phase, which introduces different spatial dependences
for the E1 and M1 interactions. Moreover, as the E2

FIG. 1 (color online). (a) Spatial distribution of an electromag-
netic field for a 1D standing wave. (b) Configuration of the
electromagnetic fields and optical lattices for cases (I)–(III), as
described in the text. Optical lattice sites inside jxj, jyj, jzj<
0:9� are indicated with their equipotential surfaces given by
qE1ðrÞ ¼ 0:3 and �� ¼ 1.
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interaction is proportional to the electric field gradient, its
spatial dependence also differs from that of E1. These
different spatial dependences do not allow perfect cancel-
lation of the quadratic light shift in the clock transitions
[13]. However, by admitting a constant differential light
shift offset, we will show that the spatial mismatch of the
light shift can be eliminated; therefore, the atomic-motion-
dependent clock shift, which is detrimental to atomic
clocks, can be removed.

As there are hyperpolarizability effects [2,8] that cannot
be moderated by the magic wavelength, a blue-detuned
magic wavelength that confines atoms near the nodes of
standing waves would be a promising choice, which will
reduce the relevant uncertainties down to 2� 10�19 [14].
Although the local electric field intensity for atoms is
reduced, the E2 interaction, in turn, may severely affect
the accuracy of a blue-detuned lattice clock, as the electric
field gradient can generally be maximum at the nodes of
the standing wave.

We consider 3D optical lattices consisting of three mu-
tually orthogonal standing waves, whose results are
straightforwardly applicable to lower dimensional lattices
such as red-detuned 1D lattices. In particular, we derive
spatial dependences qXðrÞ of the quadratic light shift with
X ¼ E1, M1, and E2 interactions. For generality, we as-
sume electric field amplitudes E� ¼ ��E0 of the three

standing waves and polarization vectors p� and p
b
� (jp�j ¼

jpb
�j ¼ 1) for the forward and backward running waves,

respectively, in the � ¼ x, y, z directions denoted by unit
vectors e�:

E �ð�; tÞ ¼ E�½p� cosðk��!tÞ þ pb
� cosðk�þ!tÞ�

¼ E�ðpþ
� cosk� cos!tþ p�

� sink� sin!tÞ; (1)

where we define p�
� � p� � pb

�. The total electric field

vector in this lattice is given by Eðr; tÞ ¼ P
�¼x;y;zE�ð�; tÞ.

The principal contribution to the lattice potential is
given by the second-order quasienergy shift due to the

electric dipole atom-field interaction V̂E1ðr; re; tÞ ¼ �d �
Eðr; tÞ [15],

UE1ðrÞ ¼ �hhc jV̂E1Gðre; t; r0e; t0ÞV̂E1jc ii

¼ �E2
0

2
�E1ð!ÞqE1ðrÞ; (2)

where re is the position vector of the outermost atomic
electron relative to the atomic nucleus at r, d ¼ �re is the
electric dipole moment, and Gðre; t; r0e; t0Þ is the quasi-
energy Green function of an atom. Here the atomic units
are used, e ¼ m ¼ @ ¼ 1, where the speed of light is c �
137. The double angular brackets in Eq. (2) denote the time
integration (in variables t and t0) over the field oscillation
period T ¼ 2�=! and the spatial integration over the
position re of the atomic electron. With the use of the
electric field in Eq. (1), the spatial distribution function
of the atom-field E1 interaction energy is given by

qE1ðrÞ¼1

2

�X
�

��p
þ
� cosk�

�
2þ1

2

�X
�

��p
�
� sink�

�
2
: (3)

To evaluate the contribution of the M1 interaction, it is
sufficient to determine the magnetic field component of the
lattice, which for each running wavewith wave vector k� is

given by B�ðr; tÞ ¼ k�=k� E�ðr; tÞ. The total magnetic

field corresponding to the electric field in Eq. (1) is given
by,

B ðr; tÞ ¼ X
�¼x;y;z

E�ðe� � pþ
� sink� sin!tþ e�

� p�
� cosk� cos!tÞ: (4)

The magnetic dipole contribution to the lattice potential
may be written similarly to Eq. (2), as the quasienergy shift
corresponding to the atom-fieldM1 interaction is described

by the Hamiltonian V̂M1 ¼ �m̂ � Bðr; tÞ, where m̂ ¼
�ðĴþ ŜÞ=2c is the magnetic moment of an atom with
atomic total momentum J and spin S. The spatial distribu-
tion of the M1 interaction is given by,

qM1ðrÞ ¼ 1

2

�X
�

��e� � pþ
� sink�

�
2

þ 1

2

�X
�

��e� � p�
� cosk�

�
2
: (5)

In the nonrelativistic approximation, the magnetic di-
pole polarizability in the n1S0 ground state is zero, while

for the n3P0 metastable state, it is given by

�M1ð!Þ ¼ En3P
1
� En3P

0

6c2½ðEn3P
1
� En3P

0
Þ2 �!2� ; (6)

which is evidently the value of the second order in the fine-
structure constant � ¼ 1=c. �M1ð!Þ remains negative for
! higher than the n3P0 � n3P1 transition frequency.

Not less important than the M1 Stark shift may be the
contribution of the electric quadrupole (E2) interaction,

UE2ðrÞ ¼ �hhc jV̂E2Gðre; t; r0e; t0ÞV̂E2jc ii

¼ �E2
0

2
�E2ð!ÞqE2ðrÞ: (7)

The value of the quadrupole polarizability �E2ð!Þ is of the
second order in�, just as the magnetic dipole polarizability
in Eq. (6). The E2 interaction operator may be taken from
the Taylor series in powers of the small parameter kjrej �
1 for the total atom-electric-field interaction Hamiltonian,

V̂ Eðr; re; tÞ ¼ re �
X1
s¼0

ðre � rÞs
ðsþ 1Þ! Eðr; tÞ; (8)

where all derivatives are taken with respect to the compo-
nents of the position vector r, while re is assumed constant.

V̂Eðr; re; tÞ includes all higher-order multipole interac-
tions: The s ¼ 0 term corresponds to the Hamiltonian
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V̂E1ðr; tÞ and the s ¼ 1 term to the Hamiltonian V̂E2ðr; tÞ.
After substitution of this operator into Eq. (7) and integra-
tion over time and angular variables, the spatial distribu-
tion of the quadrupole energy is determined:

qE2ðrÞ ¼ 1

2

X
ð�;�Þ

ð��e� � pþ
� sink�þ ��e� � pþ

� sink�Þ2

þ 1

2

X
ð�;�Þ

ð��e� � p�
� cosk�þ ��e� � p�

� cosk�Þ2;

(9)

where the sum runs over ð�;�Þ ¼ ðx; yÞ, (y, z), and (z, x).
Correspondingly, the quadrupole polarizabilities of the
ground and excited states are written in terms of the radial
matrix elements, e.g., for the jc i ¼ jn1S0i state,

�
1S0
E2 ð!Þ ¼ !2

60c2
hn1S0jr2eðg!1D2

þ g�!
1D2

Þr2ejn1S0i; (10)

where the radial Green functions g�!
1D

2

of the singletD-state

subspace appear.
Below we illustrate a few representative examples that

allow cancellation of spatial mismatch of the lattice poten-
tials. They are assorted by the electric field Ef and Eb of

the forward and backward running waves that compose
lattice standing waves, as summarized in Fig. 1(b).
(I) Ef k Eb standing waves (p� ¼ pb

�), in which we take

px ¼ ey, py ¼ ez, and pz ¼ ex. The E1 distribution is

calculated to be

qE1ðrÞ ¼ 2ð�2
xcos

2kxþ �2
ycos

2kyþ �2
zcos

2kzÞ: (11)

The M1 and E2 distributions are given by

qM1ðrÞ ¼ qE2ðrÞ ¼ �q� qE1ðrÞ; (12)

with �q ¼ 2ð�2
x þ �2

y þ �2
zÞ. Thus the distributions

of M1 and E2 shifts in this lattice coincide and differ
from qE1ðrÞ in sign and by a constant offset of �q.
(II) Ef?Eb standing waves (p�?pb

�) with their polar-

ization vectors pointing at an angle �=4 to the standing-

wave beams, i.e., px ¼ ðey þ ezÞ=
ffiffiffi
2

p
, pb

x ¼ ð�ey þ
ezÞ=

ffiffiffi
2

p
, py ¼ ðez þ exÞ=

ffiffiffi
2

p
, pb

y ¼ ð�ez þ exÞ=
ffiffiffi
2

p
, pz ¼

ðex þ eyÞ=
ffiffiffi
2

p
, and pb

z ¼ ðex � eyÞ=
ffiffiffi
2

p
. The E1 and E2

distributions here coincide and M1 differs from them by
sign and an offset,

qE1ðrÞ ¼ qE2ðrÞ
¼ �q=2þ 2�x�z sinkx sinkz

þ 2�y�z cosky coskz;

qM1ðrÞ ¼ �q� qE1ðrÞ:
(13)

(III) Ef?Eb standing waves (p�?pb
�), in which we take

polarization vectors to be p�
x ¼ ey � ez, p

�
y ¼ ez � ex,

and p�
z ¼ ex � ey. Then the E1 and M1 distributions

coincide and E2 differs from them by sign and an offset,

qE1ðrÞ ¼ qM1ðrÞ
¼ �q=2þ �x�y coskðxþ yÞ

þ �y�z coskðyþ zÞ þ �z�x coskðzþ xÞ;
qE2ðrÞ ¼ �q� qE1ðrÞ:

(14)

As indicated by these examples, it is essential that the
spatial distributions of qXðrÞ may show the same spatial
dependences apart from the sign and an offset �q for
particular lattice geometries. However, we note that this
is not a general feature for optical lattices. For example, in
the 3D lattice with Ef k Eb, standing waves with px ¼
py ¼ ez, and pz ¼ ex employed in our previous experi-

ment [16], neither qM1ðrÞ nor qE2ðrÞ shows the same spatial
dependencies as qE1ðrÞ; therefore, the motional effects
may limit clock uncertainties in future experiments.
These three examples show prominent features by them-

selves. For a magic frequency, where the E2 (M1) interac-
tion is significantly larger than the M1 (E2) interaction,
case (II) [case (III)] will be more advantageous than the
others, as the less significant M1 (E2) contribution may
well be neglected. For application to the blue magic wave-
length, which highlights the reduction of the hyperpolariz-
ability effects by trapping atoms near the nodes, case (I)
would be a reasonable choice, as Eq. (11) suggests the
creation of perfect nodes regardless of the intensity balance
in the orthogonal lattice beams. Regarding the lattice light
polarization, case (I) shows linear polarization, while
cases (II) and (III) have elliptical polarizations that may
give rise to the vector shift for atoms with nonzero angular
momentum.
Hereafter, we focus on case (I) and consider its applica-

tion to the blue-detuned magic wavelength. The clock
transition frequency is expressed as

�clockð!Þ ¼ �0 � 1
2��EMð!ÞqE1ðrÞE2

0

� 1
2��0ð!Þ�qE2

0 þOðE4
0Þ; (15)

where �0 is the atomic transition frequency. The quadratic
light shift is decomposed into a spatially modulated and
uniform terms by ��EMð!Þ � ��E1ð!Þ ���0ð!Þ and
��0ð!Þ � ��M1ð!Þ þ ��E2ð!Þ using differential E1,
M1, and E2 polarizabilities in the clock transition.
Besides the hyperpolarizability effects that are minimized
by use of a blue-detuned lattice, the magic frequency !m

may be given by ��EMð!mÞ ¼ 0 [17], allowing us to
define !m independent of atomic motional states. The
residual M1-E2 term �� ¼ � 1

2 ��0ð!mÞ�qE2
0 provides

an atomic-position-independent offset, which is solely re-
lated to the total lattice laser intensity �qE2

0 ¼
2ðE2

x þ E2
y þ E2

zÞ.
To find the magic frequency experimentally, the atomic-

motion-dependent term in Eq. (15) needs to be dis-
criminated. Harmonically approximating the trapping po-
tential near the lattice node, e.g., at x ¼ y ¼ z ¼ �=4 and
averaging over the atom positions in the oscillator state
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jni ¼ jnx; ny; nzi, the second term in the right-hand side of

Eq. (15) should be replaced by

2

�
� 1

2
��EMqE1ðrÞE2

0

�
n
¼ X

�

ð�P
� ��S

�Þ
�
n� þ 1

2

�
;

(16)

where �ð‘Þ
� ¼ k��E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�ð‘Þ

EMð!Þj=M
q

is the vibrational

frequency of atoms in the � direction of the lattice potential
for the ‘ ¼ Pð3P0Þ or Sð1S0Þ state. Here M is the mass of

the atom,�ð‘Þ
EMð!Þ � �ð‘Þ

E1ð!Þ � �ð‘Þ
M1ð!Þ � �ð‘Þ

E2ð!Þ is given
by the E1, M1, and E2 polarizabilities in the ‘ state, and
factor 2 accounts for the kinetic energy.

The magic frequency !m can be determined by measur-
ing the atomic-motion-dependent clock shift ��ð!;�nÞ ¼
�clockð!;�nþ nÞ � �clockð!;nÞ for atoms occupying vi-
brational states differing by �n and minimizing it to be
zero, i.e.,��ð!m; �nÞ ¼ 0, rather than by investigating the
lattice intensity dependent clock shift [18,19]. Once the
magic frequency is determined, the residual M1-E2 offset
�� can be evaluated by the vibrational frequencies �� ¼
�S

�ð!mÞ ¼ �P
� ð!mÞ of the lattice potential as

�� ¼ � M��0

2k2j�EMj
ð�2

x þ�2
y þ�2

zÞ: (17)

Therefore all the essential measurements are done by the
frequency measurements, once the magic frequency or
wavelength is measured and shared. The same strategy
should apply to 1D optical lattices with red-detuned magic
wavelength by setting �x � 0 and �y ¼ �z ¼ 0 in case (I).

The proposed optical lattice will be conveniently real-
ized by a folded lattice [16,21], which maintains the rela-
tive phases of the orthogonal standing waves to realize
linear lattice polarizations. Equation (1) assumes that the
intensities of the counter-propagating beam pairs are bal-
anced, which is accomplished by preparing lattice beams
inside an optical cavity [16]. The blue-detuned magic
wavelength for the Sr clock transition is experimentally
determined to be �m ¼ 2�c=!m � 389:9 nm [14], where
the numerical estimates for this lattice give ��0=j�EMj �
�1:4� 10�7 with ��M1=��E2 � 8� 10�3 [22].
Therefore, the offset frequency is given by ��=2� �
40I mHz for a trap frequency of ��=2� ¼ 75

ffiffiffi
I

p
kHz,

where I is the single running wave laser intensity measured
in kW=cm2 assuming �� ¼ 1. The uncertainty for this

correction may be evaluated to be � 4I mHz, assuming
an inhomogeneity of the lattice intensity of 10%.

For 87Sr atoms with a total angular momentum of F ¼
9=2, the tensor light shift due to the spatial rotation of the
lattice polarization with respect to the quantization axis
may occur. As the shift is proportional to the light intensity
near the nodes, the shift may be reduced to the mHz level
for the blue magic wavelength. Bosonic isotopes such as
88Sr or other atomic elements with nuclear spin of I ¼ 1=2,

e.g., 171Yb or 199Hgmaywell be used to suppress the tensor
light shift.
In summary, we present general formulas for the qua-

dratic light shift taking multipolar atom-field interactions
into account and show that the spatial mismatch of the
interactions in the clock transition can be treated as a
spatially constant offset �� for specific lattice geometries.
Numerical estimates are made for Sr atoms, and the rele-
vant correction can be determined by trap frequency mea-
surements with the mHz level. Combined with the blue
magic wavelength, the hyperpolarizability effect is mini-
mized as it solely contributes to the anharmonic part of the
space-dependent light shift and clock uncertainty at the
10�18 level will be within reach.
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