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A very slow electron is shown to emerge when an intense high-frequency laser pulse is applied to a
hydrogen negative ion. This counterintuitive effect cannot be accounted for by multiphoton or tunneling
ionization mechanisms. We explore the effect and show that in the high-frequency regime the atomic
electron is promoted to the continuum via a nonadiabatic transition caused by slow deformation of the
dressed potential that follows a variation of the envelope of the laser pulse. This is a general mechanism,
and a slow electron peak should always appear in the photoelectron spectrum when an atom is irradiated

by a high-frequency pulse of finite length.
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The latest free electron laser technologies generate the
coherent light sources in x-ray range. The wavelength,
duration, and intensity of the pulses reach tens of nano-
meters, tens of femtoseconds, and 10'>-10'® W/cm?, re-
spectively [1-3]. This has extended the research area from
the infrared to the high-frequency (HF) regime. The ion-
ization dynamics in the two regimes is governed by quite
distinct aspects. While the former has been more actively
studied in recent years, interest in the latter is expected to
grow in the nearest future. One well-established phenome-
non in the HF regime is the atomic stabilization—a de-
crease of the ionization rate as a function of the laser
intensity at sufficiently high intensities [4,5]. The study
of this phenomenon proves that the Kramers-Henneberger
(KH) frame [6,7] (in which the interaction with the laser
field is transformed into a quiver motion of the atomic
potential) and the high-frequency Floquet theory (HFFT)
[8] (in which the quiver motion is averaged in time and the
atomic stabilization is explained by the formation of a
stationary state supported by a ‘“dressed” potential) pro-
vide an adequate theoretical framework for the analysis of
the HF regime. However, real pulses, even containing
many optical cycles, have finite length. This circumstance
may lead to surprising effects that are not accounted for by
the HFFT. Recently, we proposed an adiabatic version of
the HFFT [9,10] which enables one to take slow variations
of the pulse envelope into account. This approach provides
a powerful tool to understand the dynamics and interpret
the photoelectron spectra in the HF regime. Using this
approach, in this Letter we address some salient features
of the physics in the HF regime. We present and explore an
especially counterintuitive effect of generation of slow
electrons by intense HF laser pulses. This effect is ex-
plained by an ionization mechanism which, as far as we
know, has not been investigated previously.

We consider a negative ion H™ interacting with a laser
pulse. The time-dependent Schrodinger equation (TDSE)
in the single-active-electron approximation in the KH
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frame reads (atomic units are used throughout)

iatp(r, 1) _

- I:—%A +V(r + a(t)l)]t//(r, n, (D)

where V(r) is the atomic potential and «(r) is the classical
trajectory of an electron in the laser field. The ion H™ is
modeled by a Gaussian potential V(r) = —V,exp(—r?/r3)
which supports only one bound state with the correct
energy E, = —0.0277510 [10,11]. The electric field is
represented by F(-T/2=t=T/2) = Ff(¢/T) X
(e sinwt, 0, coswt), where T is the pulse length. The enve-
lope f(7) is a bell-shaped function satisfying f(—7) =
f(7), f(£1/2) = 0, and maxf(7) = f(0) = 1. We choose
it in such a way that &(+7/2) = a(*T/2) = 0, so the
photoelectron spectra in the KH and laboratory frames
coincide [10]. We shall consider pulses with linear (¢ =
0) and circular (¢ = 1) polarizations. The maximum elec-
tron’s excursion amplitude for such pulses is g =
max|a(t)] = F/w?. The main advantage of the KH frame
for solving the TDSE [12], especially in the HF regime, is
that the potential in Eq. (1) is localized in a finite region of
the size a ~ ry + «. There is no electric field outside this
region, so applying the outgoing-wave boundary condi-
tions at its border one should be able to extract observables
with minimum computational labor. Recently, one of us
has developed a method which enables one to exactly
incorporate the outgoing-wave boundary conditions
[11,13,14]. The method is based on the expansion of the
solution to the TDSE in terms of the Siegert states; it
generalizes earlier applications of Siegert states for time
propagation of wave packets [15-17] to nonstationary
systems. The first applications of this method to the
laser-atom interaction problem [9—11] have demonstrated
its ability to produce very accurate highly resolved photo-
electron spectra. Figure 1 shows typical spectra for H™ in
the HF regime produced by pulses with F = 0.3, w =
/10, and T = 2400. The most prominent feature in
such spectra is a series of above-threshold ionization
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FIG. 1 (color online). Typical partial-wave photoelectron spec-
tra for H™ produced by high-frequency pulses with linear (LP)
and circular (CP) polarizations. The laser parameters are F =
0.3 (I =3.1X10" W/cm?), w = /10 =8.55¢eV, and T =
2400 = 57.6 fs, so the pulse contains 120 optical cycles and
ag = 3.04. In both cases, the total ionization probability is close
to 99%. The arrows indicate the n-photon absorption energies
Ey + nw for n =1 and 2.

(ATT) peaks located at the n-photon absorption energies
Ey + no [18]. Even though the physics associated with
ATTI peaks is generally well understood [19], new features
of ATT spectra continue to be uncovered.

In Refs. [9-11], we found and analyzed an oscillating
substructure of ATI peaks in the atomic stabilization re-
gime resulting from the interference of electrons ionized in
the rising and falling parts of the pulse. Here we focus on
another novel and general feature of the same spectra. One
can notice an additional peak located at small photoelec-
tron energies in Fig. 1. Let us call it the slow electron peak
(SEP). The SEP exists for any polarization of the pulse.
Similar SEPs can be found in spectra reported in [10,11].
Our calculations show that the SEP appears under the
following conditions establishing a relation between three
time scales in the problem:

w > |Ey|, ol > 1, |EolT > 1. 2
Trying to understand the origin of the SEP, first of all one
has to rule out the channel closing mechanism. Indeed, in
the HF regime the ponderomotive shifts of the bound state
and ionization threshold are almost equal. Another possi-
bility is multiphoton ionization followed by emission of the
same number of photons. Because of a finite spectral width
of the pulse, this process may produce slow electrons.
However, it cannot explain the calculated dependencies
of the SEP on the pulse parameters, at least not in any
finite order. We mention tunneling, but only in order to
exclude this mechanism also, since it has nothing to do
with the properties of the HF regime. Known ionization
mechanisms thus fail to account for the appearance of the
SEP. In this Letter we propose a possible solution for this
situation.

A natural framework to treat the regime defined by the
first condition in (2) is the high-frequency Floquet theory
[8]. In the monochromatic case, the potential in Eq. (1) can
be expanded into the Fourier series,

V(e + a@h) = > V,(r;ag)e™. 3)

n=-—oo

In the lowest order of the HFFT, the electron is in a
stationary state supported by the time-averaged or
“dressed” potential V,(r; a). In the next order, its inter-
action with the other terms in Eq. (3), which represent
multiphoton decay channels, is taken into account. Note
that the dressed potential V,(r; ) depends on the excur-
sion amplitude « (as well as on the polarization of the
laser field); it coincides with the original atomic potential
V(r) for @y = 0, but may considerably differ from it for
large values of «. In our case, the pulse is not monochro-
matic, but its envelope varies slowly. The second condition
in (2) ensures that the problem can be treated using the
adiabatic version of the HFFT [9,10]. This approach is
implemented by substituting oy — a(f) = af(¢/T) into
the right-hand side of Eq. (3). Neglecting all multiphoton
processes, we thus arrive at the equation

ialﬂo(lﬁ n _

at [_%A + Vo(r; a(f))]gbo(r, )

In contrast to Eq. (1), the Hamiltonian in Eq. (4) depends
on time only via a slow time dependence of the envelope of
the pulse; rapid oscillations of a(r) at the laser frequency
are averaged out by switching to the dressed potential. We
shall call Eq. (4) the time-averaged TDSE.

Equation (4) does not account for multiphoton pro-
cesses, but we expect that it correctly describes the physics
associated with the SEP. To confirm this, we compare
spectra obtained by solving Egs. (1) and (4). The step
from Eq. (1) to Eq. (4) is justified by the first two con-
ditions in (2), so these conditions must be satisfied. We
consider pulses of the same length 7 = 2400 as in Fig. 1.
The spectra obtained from the full TDSE (1) depend on the
field amplitude F and frequency w separately, while those
obtained from the time-averaged TDSE (4) depend only on
their combination given by «,. We solve Egs. (1) for pulses
with F = n?F, and @ = nw,, so the value of «, is kept
fixed, where F, = 0.3 and w, = /10, as in Fig. 1. As n
grows, the frequency of the pulse grows, and spectra
obtained from Eq. (1) are expected to converge to the
one from Eq. (4). This is indeed the case, see Fig. 2. This
holds for any polarization of the pulse. We thus conclude
that the physical origin of the SEP can be sought on the
basis of Eq. (4).

The third condition in (2) facilitates the analysis of
Eq. (4). Under this condition, transitions caused by varia-
tions of the dressed potential can be treated in the adiabatic
approximation. We are interested in transitions to the con-
tinuum. While nonadiabatic transitions between discrete
states have been a subject of intensive studies since the

153003-2



PRL 103, 153003 (2009)

PHYSICAL REVIEW LETTERS

week ending
9 OCTOBER 2009

R o, LP]
,!i R 2(00
06 R0
—_ ; 16w, ]
G 02f T — TDSE(av)/
ol
n- L
40}
20f .-
of
0

FIG. 2 (color online). Broken curves: the full TDSE results,
Eq. (1), for the slow electron peak produced by pulses with F =
n’Fy, @ = nwg, and T = 2400, where w, = /10, Fy = 0.3,
and the integer n varies from 1 to 16. The value of «, = 3.04 for
these pulses is kept fixed and equal to that in Fig. 1. Solid curves:
the results obtained by solving the time-averaged TDSE (4). The
total spectra for linear (LP) and circular (CP) polarizations are
shown.

early days of quantum mechanics, see, e.g., [20] and
references therein, much less is known about nonadiabatic
transitions between a discrete and continuum states. The
problem was raised and solved for a certain situation in an
early paper by Solov’ev [21], see also his review article
[22]. More recently, the theory was rederived on com-
pletely different grounds [23], which confirmed the results
of [21], but also provided a way to implement them in
practical calculations. We shall use the formulation of [23].
A key object in this formulation is the Siegert state (SS)
defined by the Hamiltonian in Eq. (4), the one which
coincides with the initial bound state of the unperturbed
atom for a(¢) = 0, as a function of time ¢. We discuss the
adiabatic approximation only for circular polarization,
since the dressed potential for the present model in this
case can be calculated analytically. This potential is axially
symmetric about the normal to the polarization plane. To
construct the SS, we use a partial-wave expansion and the
outgoing-wave boundary conditions introduced in [24];
more details on this procedure will be given elsewhere.
Let ko(r) and Ey(t) = k3(1)/2 denote the momentum
and energy eigenvalues for the SS. At the ends of the
pulse a(*T/2) =0, hence ko(=T/2)=i/—2E, and
Ey(xT/2) = E,. As a(t) grows, the dressed potential
Vo (r; a(?)) becomes shallower, and at some critical point
a,. = a(t,) the bound state disappears, i.e., Ey(¢,) = 0. For
the present model «. = 4.48. For pulses shown in Figs. 1
and 2 maxa(f) = ay = 3.04. So the SS remains bound all
the way on the real axis of time, which corresponds to the
underbarrier case in the classification of [23]. Its energy
Ey(r) <0 goes up [its momentum ky(f) goes down along
the imaginary axis in the complex k plane] on the rising

part of the pulse —7/2 <t <0, reaches its maximum at
t = 0, and this evolution is repeated in the reverse order on
the falling part of the pulse 0 < ¢ < T/2. In the adiabatic
regime, a transition can efficiently occur only when the
energies of the initial and final states coincide; transitions
associated with a change of the energy of the system are
suppressed. Thus the moment of ionization is defined by
(23]

ko(t) = k — t = t(k), %)

where E = k?/2 is the energy of the ionized electron. In
the underbarrier case, this equation does not have solutions
on the real ¢ axis. A solution can be found if, reaching the
maximum of Ey(z) at ¢ = 0, one turns to the left and goes
along the imaginary axis into the upper half of the complex
t plane, see Fig. 3. The value of «(7) is real and continues to
grow along this path. The SS remains bound until the point
t, = 1(0), where ky(z,) = 0. This is the entrance into the
continuum. The solution #(k) to Eq. (5) traces a trajectory
in the complex ¢ plane passing through .. Only a part of
this trajectory corresponding to positive values of k is
needed to calculate the photoelectron spectrum in the
adiabatic approximation [23]. The partial-wave spectrum
is given by [23]

) di(k) | | o4 (@: (k) |2
P.(E) = 2ImS(¢(k)) 0 ) 6
(E) = e dk | | kah®(ka) ©
where
S(t) = Et — f Ey(r)dt. (7)
0

Here hgl)(z) is the spherical Hankel function of the first

kind and d)g)(r; t) are the radial functions in the partial-
wave expansion of the SS eigenfunction. The radius a at
which the outgoing-wave boundary condition is applied
appears in Eq. (6), but the results do not depend on its
value, provided that a exceeds the range of the dressed
potential [23]. In Fig. 4, we compare the partial-wave
photoelectron spectra obtained by solving Eq. (4) with
those defined by Eq. (6) for three pulses with 7= 600,
1200, and 2400 for the same value of « as in Figs. 1 and 2.
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FIG. 3. An example of the trajectory traced by the solution (k)
to Eq. (5) in the complex ¢ plane. The SS is promoted to the
continuum at the critical point ¢, = #(0).
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FIG. 4 (color online). The partial-wave components of the
slow electron peak produced by pulses with @y = 3.04, as in
Figs. 1 and 2. Solid curves: the exact results obtained from the
time-averaged TDSE (4). Dashed curves: the adiabatic approxi-
mation, Eq. (6). Dash-dotted curves: the limiting form of the
adiabatic approximation for 7 — oo, Eq. (8).

The full width at half maximum for the present pulse
envelope f(7) is T/3, so the third condition in (2) can be
specified more accurately as |Ey|T/3 > 2. One can see
that 7 = 600 is only the onset of the adiabatic regime. As T
grows, the agreement between the exact spectra obtained
from Eq. (4) and the adiabatic approximation (6) clearly
improves. Thus Eq. (6) describes the SEP in the adiabatic
regime. An advantage of having this approximation is that
now we can extract the dependence of the SEP on the
electron energy E and pulse length 7 analytically. In an
ultimate adiabatic limit 7 — oo the width of the SEP tends
to zero, so all the characteristics of the SS needed to
implement Eq. (6) can be substituted by their values at t =
t.. We thus obtain

PI(E) ~ AlTszle_BT_le“lTE, (8)

where the coefficients A;, B, and 7, = t./T depend on the
atomic potential V(r) and pulse envelope f(7), but do not
depend on E and 7. The spectra obtained from Eq. (8) for
the longest pulse with 7 = 2400 are shown in Fig. 4.
Equation (8) is less accurate than Eq. (6), but is certainly
correct qualitatively. One consequence of Eq. (8) is that the
SEP has a very simple and typical energy dependence for
the adiabatic regime [23,25]. Another consequence is that
the width of the SEP and the total yield of slow electrons
scale with T as 77! and T~'/2¢7 87 respectively. The
critical moment 7. appears in Eq. (8) and hence is an
observable characteristic. The main dependence on the
field amplitude is hidden in the value of 7. and is not that
simple to extract.

In summary, we discussed the appearance of a slow
electron peak in photoelectron spectra produced by intense
high-frequency laser pulses. The peak is a robust feature
and exists for any polarization of the laser field. It results

from promoting the atomic electron to the continuum via a
nonadiabatic transition [21,23] caused by slow deforma-
tion of the dressed potential that follows a variation of the
envelope of the laser pulse. This ionization mechanism
should reveal itself in all spectra produced by high-
frequency pulses of finite length. Being a function of the
pulse envelope, the slow electron peak could serve as a
measure of the pulse length or intensity.
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