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Using seven-dimensional Sasaki-Einstein spaces we construct solutions ofD ¼ 11 supergravity that are

holographically dual to superconductors in three spacetime dimensions. Our numerical results indicate a

new zero temperature solution dual to a quantum critical point.
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Introduction.—The anti–de Sitter/conformal field theory
(AdS/CFT) correspondence provides a powerful frame-
work for studying strongly coupled quantum field theories
using gravitational techniques. It is an exciting possibility
that these techniques can be used to study classes of super-
conductors which are not well described by more standard
approaches [1–3].

The basic setup requires that the CFT has a global
Abelian symmetry corresponding to a massless gauge field
propagating in the AdS space. We also require an operator
in the CFT that corresponds to a scalar field that is charged
with respect to this gauge field. Adding a black hole to the
AdS space describes the CFT at finite temperature. One
then looks for cases where there are high temperature black
hole solutions with no charged scalar hair but below some
critical temperature black hole solutions with charged
scalar hair appear and moreover dominate the free energy.
Since we are interested in describing superconductors in
flat spacetime we consider black holes with planar sym-
metry. In order to obtain a critical temperature, conformal
invariance then implies that another scale needs to be
introduced. This is achieved by considering electrically
charged black holes which corresponds to studying the
dual CFT at finite chemical potential.

Precisely this setup has been studied using a phenome-
nological theory of gravity in D ¼ 4 coupled to a single
charged scalar field and it has been shown that, for certain
parameters, the system manifests superconductivity in
three spacetime dimensions, in the above sense [3]. It is
important to go beyond such models and construct solu-
tions in the context of string or M theory so that there is a
consistent underlying quantum theory and CFT dual. Also,
as we shall see, the behavior of the string or M-theory
solutions will differ substantially from that of the phe-
nomenological model [3] at low temperature. It was shown
in [4] that the D ¼ 4 phenomenological models of [3]
arise, at the linearized level, after Kaluza-Klein (KK)
reduction of D ¼ 11 supergravity on a seven-dimensional
Sasaki-Einstein space SE7. Here we go beyond this line-
arized approximation by working with a consistent trunca-
tion of the D ¼ 4 KK reduced theory presented in [5]. The
truncation is consistent in the sense that any solution of this
D ¼ 4 theory, combined with a given SE7 metric, gives

rise to an exact solution of D ¼ 11 supergravity. Here we
shall use this D ¼ 4 theory to construct exact solutions of
D ¼ 11 supergravity that correspond to holographic
superconductivity.
The KK truncation.—We begin by recalling that any SE7

metric can, locally, be written as a fibration over a six-
dimensional Kähler-Einstein space, KE6:

ds2ðSE7Þ � ds2ðKE6Þ þ � � �: (1)

Here � is the one-form dual to the Reeb Killing vector
satisfying d� ¼ 2J where J is the Kähler form of KE6. We
denote the (3, 0) form defined on KE6 by �. For a regular
or quasiregular SE7 manifold, the orbits of the Reeb vector
all close, corresponding to compact Uð1Þ isometry, and the
KE6 is a globally defined manifold or orbifold, respec-
tively. For an irregular SE7 manifold, the Reeb vector
generates a noncompact R isometry and the KE6 is only
locally defined.
In the KK ansatz of [5] the D ¼ 11 metric is written

ds2 ¼ e�6U�Vds24 þ e2Uds2ðKE6Þ
þ e2Vð�þ A1Þ � ð�þ A1Þ (2)

while the four-form is written

G4 ¼ 6e�18U�3Vð�þ h2 þ j�j2Þvol4 þH3 ^ ð�þ A1Þ
þH2 ^ J þ dh ^ J ^ ð�þ A1Þ þ 2hJ ^ J

þ ffiffiffi
3

p ½�ð�þ A1Þ ^�� i
4D� ^�þ c:c:�; (3)

where ds24 is a four-dimensional metric (in Einstein frame),
U, V, h are real scalars, and � is a complex scalar defined
on the four-dimensional space. Furthermore, also defined
on this four-dimensional space are A1 a one-form potential,
with field strength F2 � dA1, two-form and three-form
field strengths H2 and H3, related to one-form and two-
form potentials via H3 ¼ dB2 and H2 ¼ dB1 þ 2B2 þ
hF2. Finally D� � d�� 4iA1�.
This is a consistent KK truncation ofD ¼ 11 supergrav-

ity in the sense that if the equations of motion for the
4d fields ds24, U, V, A1, H2, H3, h, � as given in [5] are
satisfied then so are the D ¼ 11 equations. The D ¼ 4
equations of motion admit a vacuum solution with vanish-
ing matter fields which uplifts to the D ¼ 11 solution:
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ds2¼ 1
4ds

2ðAdS4Þþds2ðSE7Þ; G4¼�38volðAdS4Þ; (4)

where ds2ðAdSÞ4 is the standard unit radius metric. When
� ¼ þ1, this AdS4 � SE7 solution is supersymmetric and
describes M2 branes sitting at the apex of the Calabi-Yau
fourfold (CY4) cone whose base space is given by the SE7.
When � ¼ �1 the solution is a ‘‘skew-whiffed’’ AdS4 �
SE7 solution, which describes anti-M2 branes sitting at the
apex of the CY4 cone. These solutions break all of the
supersymmetry except for the special case when the SE7 is
the round seven-sphere, S7, in which case it is maximally
supersymmetric. Note that the skew-whiffed solutions with
SE7 � S7 are perturbatively stable [6], despite the absence
of supersymmetry. Thus such backgrounds should be dual
to three-dimensional CFTs at least in the strict N ¼ 1
limit. We are most interested in the skew-whiffed case
because it is for that case that the operator dual to � has
scaling dimensions � ¼ 1 or 2 [5] and, based on the work
of [4], is when we expect holographic superconductivity.

The D ¼ 4 equations of motion can be derived from a
four-dimensional action given in [5]. It is convenient to
work with an action that is obtained after dualizing the one-
form B1 to another one-form ~B1 and the two-form B2 to a
scalar a as explained in Sec. 2.3 of [5]. The dual fields are
related to the original fields via

H3¼�e�12U �½daþ6ð ~B1��A1Þ� 3
4ið��D���D��Þ�;

H2¼ð4h2þe4Uþ2VÞ�1½2h�e2UþV��ð ~H2þh2F2Þ; (5)

where ~H2 � d ~B1. We now restrict to the (skew-whiffed)
case � ¼ �1. For this case we can make the following
additional truncation of the D ¼ 4 theory:

a¼h¼ 0; V¼�2U; A1 ¼� ~B1; e6U ¼ 1� 3
4j�j2:

(6)

One can show that provided that we restrict to configura-
tions satisfying F2 ^ F2 ¼ 0 we obtain equations of mo-
tion that can be derived from the action

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 1

4
F̂��F̂

�� þ
�
1� 1

2
j�̂j2

��2

�
�
� jD�̂j2 þ 24

�
1� 2

3
j�̂j2

���
; (7)

whereD�̂ � d�̂� 2iÂ1�̂, and we have defined Â1 � 2A1,

�̂ � ð3=2Þ1=2�. Linearizing in the complex scalar �̂, this
gives the action considered in [3] (with their L ¼ 1=2 and
their q ¼ 2). This nonlinear action is in the class consid-

ered in [7] and in addition to theAdS4 vacuumwith Â1 ¼ 0
and �̂ ¼ 0, which uplifts to (4), it also admits AdS4 vacuua

with Â1 ¼ 0 and constant j�̂j ¼ 1, which uplift to theD ¼
11 solutions [8] found in [11].

Black hole solutions.—The key result of the last section
is that any solution to theD ¼ 4 equations of motion of the

action (7) with F̂ ^ F̂ ¼ 0, gives an exact solution of D ¼
11 supergravity for any SE7 metric. To find solutions
relevant for studying superconductivity via holography
we consider the following ansatz:

ds2 ¼ �ge��dt2 þ g�1dr2 þ r2ðdx2 þ dy2Þ;
Â1 ¼ �̂dt; �̂ � 	 2 R;

(8)

where g, �, �̂, and 	 are all functions of r only. Being

purely electrically charged this satisfies the F̂ ^ F̂ ¼ 0
condition. After substituting into the equations of motion
arising from (7), we are led to ordinary differential equa-
tions which can also be obtained from the action obtained
by substituting the ansatz directly into (7):

S ¼ c
Z

drr2e��=2

�
�g00 þ g0

�
3

2
�0 � 4

r

�

þ g

�
�00 � 1

2
ð�0Þ2 þ 2

�0

r
� 2

r2

�
þ 1

2
e�ð�̂0Þ2

þ
�
1� 1

2
	2

��2
�
� gð	0Þ2 þ 4g�1e��̂2	2

þ 24

�
1� 2

3
	2

���
; (9)

where c ¼ ð16�GÞ�1
R
dtdxdy.

We next observe that the system admits the following
exact AdS Reissner-Nordström type solution 	 ¼ � ¼ 0:

g¼4r2�1

r

�
4r3þþ
2

rþ

�
þ
2

r2
; �̂¼


�
1

rþ
�1

r

�
(10)

for some constants 
, rþ. The horizon is located at r ¼ rþ
and for large r it asymptotically approaches 1=4 of a unit
radius AdS4 [see (4)]. This solution should describe the
high temperature phase of the superconductor.
We are interested in finding more general black hole

solutions with charged scalar hair, 	 � 0. Let us examine
the equations at the horizon and at infinity. At the horizon

r ¼ rþ we demand that gðrþÞ ¼ �̂ðrþÞ ¼ 0. One then
finds that the solution is specified by 4 parameters at the

horizon rþ, �ðrþÞ, �̂0ðrþÞ, 	ðrþÞ. At r ¼ 1 we have the
asymptotic expansion,

� ¼ �a þ . . . ;
	ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ 	1

r
þ 	2

r2
þ . . . ;

�̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p ¼ e��a=2

�
�̂� q̂

r

�
þ . . .

e��g ¼ e��a

�
4r2 � 8�Gðmþ 4

3	1	2Þ
r

�
þ . . .

(11)

determined by the data �a, 	1;2, m, �̂, q̂. The scaling

r! ar; ðt; x;yÞ ! a�1ðt; x;yÞ; g! a2g; �̂! a�̂

(12)

leaves the metric, A1, and all equations of motion invariant.
Action and thermodynamics.—We analytically continue

by defining � � it. The temperature of the black hole is

T ¼ e�a=2=�� where �� is fixed by demanding regularity
of the Euclidean metric at r ¼ rþ. We find:
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T ¼ rþeð�a��Þ=2

4�

�
12ð1� 2

3	
2Þ

ð1� 1
2	

2Þ2 � 1

4
e��̂02

�
r¼rþ

: (13)

Defining I � �iS, we can calculate the on-shell Euclidean
action IOS

IOS ¼ ��vol2
16�G

Z 1

rþ
dr½r2e��=2ðg0 � g�0 � e��̂�̂0Þ�0

¼ ��vol2
16�G

Z 1

rþ
dr½2rge��=2�0; (14)

where vol2 �
R
dxdy. The latter expression only gets con-

tributions from the on-shell functions at r ¼ 1 since
gðrþÞ ¼ 0, while the former expression gets contributions
from r ¼ rþ and r ¼ 1. The on-shell action diverges and
we need to regulate by adding appropriate counterterms.
We define Itot � I þ Ict and, for simplicity, we will focus
on the following counterterm action Ict:

Ict ¼ 1

16�G

Z
d�d2x

ffiffiffiffiffiffiffi
g1

p ½�2K þ 8þ 2	2�; (15)

whereK ¼ g�̂�
1 r�̂n� is the trace of the extrinsic curvature.

For our class of solutions we find

Ict ¼ ��vol2
16�G

lim
r!1e

��=2½�r2g0 þ r2g�0 � 4gr

þ r2g1=2ð8þ 2	2Þ�: (16)

Notice that under a variation of the action Itot with respect

to �, g, �̂ yields the equations of motion together with
surface terms. For an on-shell variation the only terms
remaining are these surface terms, and after substituting
the asymptotic boundary expansion (11) (higher order
terms are also required) we find

½�Itot�OS ¼ ��vol2
16�

e��a=2

��
� 1

2
mþ 1

2
�̂ q̂

�
��a

� q̂��̂� 4	2�	1

�
: (17)

Note that we are keeping �� fixed in this variation. Hence
we see that Itot is stationary for fixed temperature and
chemical potential (i.e., ��a ¼ ��̂ ¼ 0) and for either
	2 ¼ 0 or fixed 	1.

We also find that the on-shell total action is given by

½Itot�OS ¼ vol2
T

½m� �̂ q̂�Ts� ¼ vol2
T

�
� 1

2
m� 2	1	2

�
;

(18)

where s ¼ r2þ
4G is the entropy density of the solution andm is

the energy density. The two forms of the on-shell action
come from the two ways of writing the action as a total
derivative given above. We note that the equality of these
expressions imply a Smarr-like relation. Also note that
after using ��a ¼ 2�T=T (since �� is held fixed) the
equality of (17) and the variation of the first form of the
on-shell action in (18) imply a first law,

�m ¼ T�sþ �̂�q̂� 4	2�	1: (19)

Both this Smarr relation and the first law were used to
confirm the accuracy of our numerical solutions below.
For simplicity we restrict discussion to solutions with

boundary condition 	1 ¼ 0 [12] and we interpret TItot ¼
ðvol2Þð�m=2Þ as a thermodynamic potential, �ðT;�Þ.
Note also that 	2 then determines the vacuum expectation
value of the operator dual to �. Recall from [5] that writing
U ¼ �uþ v=3, V ¼ 6uþ v=3, the fields u, v are dual to
operators Ou;v with dimensions �u ¼ 4, �v ¼ 6. The

truncation (6) implies that the vacuum expectation values
of these dual operators are fixed by 	2. The asymptotic
expansion of u to oð1=r4Þ and v to oð1=r6Þ gives hOui / 	2

2

and hOvi / �2	2
2.

Numerical results.—Following [3] we solved the differ-
ential equations numerically using a shooting method. We
used (12) to fix the scale �̂ ¼ 1. At high temperatures the
black hole solutions have no scalar hair (	2 ¼ 0) and are
just the solutions given in (10). At a critical temperature
Tc � 0:042 a new branch of solutions with 	2 � 0 appears
and moreover dominates the free energy. We refer to these
as the unbroken and broken phase solutions, corresponding
to normal and superconducting phases, respectively. In
Figs. 1–3 we have plotted some features of our solutions
and compared them with the solutions of the phenomeno-
logical model considered in [3].
While the results are in agreement near the critical

temperature, as expected, we see marked differences as
the temperature goes to zero. We have calculated the Ricci

scalar and curvature invariant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
���R


���
q

at r ¼ rþ
which indicate that the solutions of [3] are becoming
singular but our solutions are approaching a regular zero
temperature solution, without horizon, holographically
dual to a quantum critical point. Indeed as r ! rþ we

find 	� 1, �� const, �̂� 0, and g� 16
3 ðr2 � r3þ=rÞ,

0.01 0.02 0.03 0.04 0.05 0.06
T

− 0.020

− 0.015

− 0.010

− 0.005

0.000

−
G m

2

FIG. 1 (color online). Plot showing�1
2Gm [proportional to the

thermodynamic potential �ðT;�Þ] against T with fixed �̂ ¼ 1,
for unbroken phase solutions (long dashed red), broken phase
(blue) and solutions of [3] (with their L ¼ 1=2 and their q ¼ 2)
(dashed blue).

PRL 103, 151601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 OCTOBER 2009

151601-3



and fixing �̂ ¼ 1 gives rþ ! 0 in the extremal limit. In
particular, the geometry near r ¼ rþ is consistent with
being the exact AdS4 solution with 	 ¼ 1, mentioned
earlier, which uplifts to the D ¼ 11 solution found in

[11]. For such a solution R ¼ �64 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
���R


���
q

¼
32, agreeing with the low temperature limit seen in Figs. 1–
3. The full zero temperature solution thus appears to be a
charged domain wall, of the type considered in [13], con-
necting two AdS4 vacua of (7), one with 	 ¼ 0 and the
other with 	 ¼ 1. Interestingly this implies the entropy of
the solutions vanish in the low temperature limit, unlike for
the Reissner-Nordström solution (10). The asymptotic
charge appears to be derived from the scalar hair, with
the region near r ¼ rþ carrying no flux.

Concluding remarks.—For any seven-dimensional
Sasaki-Einstein space we have constructed solutions of
D ¼ 11 supergravity corresponding to holographic super-
conductors in three spacetime dimensions. We have
studied electric black holes using the action (7) whose

solutions lift to D ¼ 11 when F̂ ^ F̂ ¼ 0. One may con-
sider adding magnetic charge using the full consistent
truncation of [5]. Our results indicate the existence of a
regular zero temperature solution which is a charged do-
main wall connecting two AdS4 vacua of (7) and dual to a
new quantum critical point. An important open issue is
whether or not there are additional unstable charged modes
for skew-whiffed AdS4 � SE7 solutions, which condense
at higher temperatures. If they exist, and dominate the free
energy, then the corresponding supergravity solutions
would be the appropriate ones to describe the supercon-
ductivity and not the ones that we have constructed.
However, it is plausible that we have found the dominant
modes for large classes of SE7, if not all. For the specific
class of deformations of the four-form that were considered
in [4], it was proven that the modes that we consider are in
fact the only condensing modes. It would be worthwhile
extending this result to cover other bosonic and/or fermi-
onic modes.
We are supported by EPSRC (J. G., J. S.), the Royal

Society (J. G.) and STFC (T.W.). We thank R. Emparan,
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Note added.—After this work was completed we re-

ceived [9] which constructs solutions of string theory that
are dual to superconductors in four spacetime dimensions.
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FIG. 3 (color online). Plots showing the value of the Ricci

scalar (heavy lines) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
���R


���
q

(light lines) at the

horizon normalized by �64 and 32, respectively (conventions
as above).
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FIG. 2 (color online). Plot showing the asymptotic value of the
scalar condensate, ð8�GÞ1=4 ffiffiffiffiffiffi

	2
p

, against T (conventions as

above).
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