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We investigate the propagation of spin impurity atoms through a strongly interacting one-dimensional

Bose gas. The initially well localized impurities are accelerated by a constant force, very much analogous

to electrons subject to a bias voltage, and propagate as a one-dimensional impurity spin wave packet. We

follow the motion of the impurities in situ and characterize the interaction induced dynamics. We observe

a very complex nonequilibrium dynamics, including the emergence of large density fluctuations in the

remaining Bose gas, and multiple scattering events leading to dissipation of the impurity’s motion.
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The impetus for miniaturization has resulted in the
creation of nanostructures in which the motion of particles
is purely one-dimensional. In these systems motional de-
grees of freedom can be excited only along one direction
whereas in the two orthogonal directions the system occu-
pies the quantum mechanical ground state. To reach the
one-dimensional regime the chemical potential and the
temperature need to be much smaller than the transverse
level spacing. Interacting particles confined to a one-
dimensional waveguide are fundamentally governed by
many-body quantum mechanics [1]. In nonequilibrium
situations this gives rise to genuine quantum dynamics,
examples of which have been seen in single mode nano-
wires [2] and in atom traps [3–6]. In this Letter, we study
the nonequilibrium transport of single or few impurity
particles through a one-dimensional, strongly interacting
Bose gas. The impurities are accelerated by a constant
force, very much analogous to electrons subject to a bias
voltage, and undergo scattering with the atoms in the
Tonks-Girardeau gas.

An interacting one-dimensional Bose gas realizes a
bosonic Luttinger liquid. Its many-body quantum state in
the homogeneous case is characterized by a single parame-
ter � ¼ mg1D=@

2n1D [7,8]. Here m is the atomic mass, g1D
is the 1D coupling constant, and n1D is the 1D density. For
weak interactions (� � 1) Bose-Einstein condensation
and superfluidity are possible in harmonically confined
1D systems. For strong interactions (� � 1) the longitu-
dinal motion of the particles is highly correlated. In this so-
called Tonks-Girardeau regime the Bose gas ‘‘fermio-
nizes’’; i.e., its N-particle wave function can be related to
that of an N-particle spin-polarized Fermi gas [9–11]. The
density of the Bose gas as well as the density dependent
correlation functions become Fermion-like and superflu-
idity vanishes [12,13].

Both the weakly [3] and the strongly interacting [14,15]
regimes of one-dimensional Bose gases have been ac-
cessed a few years ago. This experimental realization of
the one-dimensional Bose gas with �-functional interac-
tions has triggered significant research efforts both experi-
mentally and theoretically [16]. Of particular interest have

been dynamical experiments [3–6]. Elementary transport
experiments have seen the suppression of dipole oscilla-
tions in a corrugated potential [5] and the absence of
thermalization [6]. These experiments, however, have fo-
cused on global properties of the gas rather than using
single impurity probes. Moreover, in contrast to previous
nonequilibrium experiments in one dimension, we work
with an open quantum system in which the impurity atoms
continuously gain kinetic energy and can transfer this
energy into the trapped gas by collisions. On the theoretical
side, single particle perturbations have been studied in a
number of different regimes [17–24].
Our realization of strongly interacting one-dimensional

gases is depicted in Fig. 1(a). We start from producing
almost pure Bose-Einstein condensates of 87Rb of up to
1:5� 105 atoms in a magnetic trap in the hyperfine ground
state jF ¼ 1; mF ¼ �1i. The harmonic magnetic trap has
the frequencies !x;z ¼ 2�� 39 Hz and !y ¼ 2��
11 Hz. Strong confinement into a one-dimensional geome-
try is achieved by adiabatically loading the three-
dimensional Bose-Einstein condensate into an optical lat-
tice. The optical lattice is formed by two retroreflected
laser beams of wavelength � ¼ 764 nm arranged in the
horizontal xy plane. In this blue-detuned optical lattice the
atoms are trapped in the intensity minima of the interfer-
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FIG. 1 (color online). (a) An array of one-dimensional Bose
gases in a two-dimensional blue-detuned optical lattice. Vertical
confinement is provided by a harmonic magnetic potential BðzÞ.
(b) Creating impurities by a radio frequency pulse resonant at a
specific magnetic field. The impurity atoms in the jF¼1;mF¼0i
state experience no vertical confining potential and are accel-
erated by gravity into the �z direction.
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ence pattern. Thus the vertical confinement is purely mag-
netic. At the position of the condensate, the standing wave
laser fields overlap perpendicularly with orthogonal polar-
izations and are focused to a circular waist (1=e2 radius) of
180 �m. The frequencies of the two beams are offset with
respect to each other by 280 MHz. The optical potential
depth U is proportional to the laser intensity and can be

expressed in terms of the recoil energy Erec ¼ h2

2m�2 .

Adiabatic loading into the ground state of the optical lattice
was achieved by ramping up the laser intensity with a
linear ramp of 150 ms duration. Typically, we confine
approximately 50 atoms per one-dimensional tube in the
center of the three-dimensional gas cloud. The interaction
parameter � depends on the strength of the optical lattice
and ranges between 2 and 10. Here � represents the
density-weighted average of �tube across all tubes. The
error in the determination of � is 15% dominated by
uncertainties in atom number and calibration of the lattice
depth.

The hybrid magnetic and optical trapping potential
provides us with the necessary means to create and detect
the impurities with very good spatial resolution. We create
spin impurities by using spatially resolved radio fre-
quency manipulation. We apply a pulse (200 �s) of radio
frequency resonant with the jF ¼ 1; mF ¼ �1i !
jF ¼ 1; mF ¼ 0i transition [25]. The spatial width of our
addressing region is Fourier limited by the duration of the
pulse and is �z � 2:3 �m [see Fig. 1(b)]. We drive ap-
proximately a �=2 pulse producing an impurity wave
packet containing up to 3 atoms per one-dimensional
tube. The atoms in the impurity state have zero magnetic
moment and are accelerated downwards by gravity. They
start from zero center-of-mass velocity and reach several
times the velocity of sound at the edge of the trapped cloud.
During the propagation they are continuously confined to
the one-dimensional waveguide in the radial direction be-
cause the kinetic energy acquired is less than the radial
level spacing. On their way downwards they strongly inter-
act with the remaining atoms because the three-
dimensional scattering lengths for collisions in the three
possible combinations of states are approximately equal to
each other.

In order to accurately study the motion of the impur-
ity atoms in our one-dimensional Bose gas we have per-
formed a time resolved tomographic measurement of both
the Bose gas and the impurity density distribution. At a
variable time � after preparation of the impurity wave
packet we measure the density distribution in each of

the components separately in situ. We employ magnetic
field (position) sensitive microwave transitions (pulse
duration 200 �s) between the hyperfine ground states
jF ¼ 1; mF ¼ �1i ! jF ¼ 2; mF ¼ 0i (trapped gas) and
jF ¼ 1; mF ¼ 0i ! jF ¼ 2; mF ¼ 1i (impurity) and de-
tect the atoms by absorption imaging on the jF ¼ 2i !
jF0 ¼ 3i transition of the D2 line. Figure 2 shows three
snapshots of the time evolution of both the trapped com-
ponent and the impurity. We observe that the impurity
atoms are initially well localized in a compact wave packet
whose width is in agreement with the Fourier limit. As the
impurity wave packet propagates it becomes wider and
distorted indicating a strong dispersion and dis-
sipation. For example, at (� ¼ 2000 �s, z ¼ �10 �m)
we observe a very distinct asymmetric steepening of the
propagating impurity wave packet which resembles the
proposed shape of a supersonic shock wave in one dimen-
sion [26]. Moreover, the propagation of the impurity leaves
a strong imprint on the trapped component indicating a
strong mutual interaction. We observe that the statistical
noise of the data points in the sample after propagation of
the impurity (� ¼ 1400 �s and � ¼ 2000 �s) is consid-
erably larger than for the initial state. This could be attrib-
uted to high frequency oscillations of the atomic density at
a length scale below our spatial resolution limit.
We have analyzed the time evolution of the center of

mass and the width of the impurity component (see Fig. 3).
Very clearly, the center of mass of the impurity does not
follow a ballistic trajectory, but its motion is hindered by
the presence of the interacting Bose gas. Theoretical in-
vestigations for impurities of equal mass exist only for the
case of nonaccelerated impurities [18–24] and mostly for
low momenta of the impurity. In our case, however, the
impurity atoms are accelerated by gravity and reach the
velocity of sound c already after traveling a distance
shorter than the interparticle separation 1=n1D. In the con-
ceptually simplest case of binary collisions the probability
for a momentum change in a collision between two atoms
in 1D (a reflection of the impurity particle from the ma-
jority atom) is p ¼ ½1þ ða1Dmv=@Þ2��1 [27]. Here a1D ¼
2@2=ðmg1DÞ is the one-dimensional scattering length. For
the first collision (i.e., after traveling a distance of order
1=n1D) we find p � 0:2, which becomes quadratically
smaller for subsequent collisions as the velocity of the
accelerated impurity particle increases. Consequently, in
the majority of the binary collisions the impurity is trans-
mitted. For binary collisions the energy dissipation scales
like _EbinðvÞ / v3=½1þ ðma1Dv=@Þ2� [6,27]. Refining this
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FIG. 2 (color online). In situ measure-
ment of the time evolution of both the
trapped component (upper curve) and the
impurity (lower curve) for different
times �. The data are taken for � ¼ 7.
The solid line is a two-point average of
the data to guide the eye.
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result for a many-body system we adopt an approach based
on Fermi’s golden rule. The rate �ðki; kfÞ of scattering a

single impurity particle from an initial momentum state ki
to a final momentum state kf can then be determined by the

dynamic structure factor Sðq;!Þ of the gas: �ðki; kfÞ /R
d!Sðq;!Þ [28]. Here q ¼ ki � kf is the momentum

change of the impurity, @! ¼ �ðkiÞ � �ðkfÞ is its corre-

sponding energy loss. We assume a free-particle-like
dispersion relation for the impurity atoms (which is viable
to first order in the impurity-gas interaction strength [22]).
For a homogeneous weakly interacting system we have
calculated the energy dissipation rate of the impurity us-
ing _EðkiÞ /

R
dqd!!Sðq;!Þ [28] to be _ESFðvÞ ¼

ð2@2n1D=ma21DÞvð1� ðcvÞ4Þ for v > c. In a homogeneous

Tonks gas we find the energy dissipation _ETGðvÞ ¼
ð2@2n1D=ma21DÞv ¼ ��mv for v > vF ¼ @�n1D=m, i.e.,

a constant, density dependent force. In the limit of large
velocities both results agree with the result for binary
collisions. In Fig. 3 we plot the predicted trajectory from
a numerical integration of the equation of motion taking
into account a Thomas-Fermi profile of the density of the
majority component as well as antibunching over a length
scale of 1=n1D. We use the predicted value of the force
constant �ðzÞ ¼ �2@2n1DðzÞ=m2a21D with �ðz ¼ 0Þ ¼
�8 m=s2 and find very good agreement with the experi-
mental data without any adjustable parameters. This theo-
retical model neglects the distortion of the density of the
trapped gas as well as coherent or multiple scattering
processes and backaction onto the impurity atoms.

The impurity wave packet spreads considerably as it
propagates. We have measured the root-mean-square
(rms) radius w of the wave packet and plot its evolution

in Fig. 3. A functionwðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0 þ v2t2
q

is fitted to the data

to extract the velocity v with which the wave packet
spreads while it is fully inside the trapped gas. We find v ¼
1:5� 0:4 mm=s, which is slightly smaller than the uncer-
tainty limited momentum distribution of the impurity wave
packet of 2:0 mm=s.
We have investigated the number of collisions the im-

purities are undergoing during the transport and the time
lag of their motion. Using state-selective detection we
determine how the number of impurity atoms inside the
trapped component decays as a function of time. From
these data we extrapolate the time delay after which all
impurity atoms have left the trapped Bose gas for different
initial positions and for different values of � (see Fig. 4). In
a simple model we assume that in every collision event the
impurity motion is set back to zero velocity and afterwards
the atoms are accelerated again by gravity. On average the

time between two collision events can be estimated tcoll �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½n1DðzÞg�

p
in which g is the gravitational acceleration.

The delay time as compared to ballistic motion can be
expressed as the total number of inelastic collisions times
the time delay accumulated per collision event (approxi-
mately tcoll) resulting in

Rz0�R n1DðzÞ�ðzÞtcollðzÞ2dz. Here
�ðzÞ ¼ 4@2n1DðzÞ=m2a21Dv is the collision rate for v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=n1DðzÞ

p
> c. This simple model explains the observed

behavior well (see fits in Fig. 4). The number of collisions
is on the order of 5 & tdelay=tcoll & 20, depending on the

interaction strength and the starting position.
Figure 5 shows absorption images of impurities propa-

gated out of a Tonks gas for different values of � while the
one-dimensional confinement was kept on. The image is
recorded a fixed time after the preparation of the impurity
wave packet. Impurity atoms leave the Tonks-Girardeau
gas after a variable time depending on how many collisions
they undergo. After the atoms have left the sample they

FIG. 4 (color online). Time delay between the impurity prepa-
ration and the exit of the last impurity atoms from the trapped
cloud for different lattice depths. The starting position is relative
to the center of the trapped cloud. The solid lines show fits
according to the model described in the text using a Thomas-
Fermi profile for the density. The numerical prefactor agrees
with the model to within a factor of 3.

FIG. 3 (color online). The circles show the measured center-
of-mass position taken for � ¼ 7. The error bars are the statis-
tical error of the center of mass of the measured density distri-
bution. The solid line is the prediction according to the model
described in the text. The gray shaded area indicates the regime
of uncertainty of 10% of n1D given by our experimental parame-
ters. The dashed curve indicates purely ballistic motion. The
squares show the increase of the width of the impurity wave
packet. The data point at 2 ms contains atoms which have
already left the trapped gas which is not taken into account by
the theory.
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simply undergo ballistic motion. We observe a leading
wave packet followed by a relatively long tail of atoms.
From the position of the main peak we conclude that the
atoms have not undergone momentum changing scattering
while moving through the one-dimensional sample. The
width of the main peak corresponds to a rms velocity
spread of ð1:9� 0:1Þ mm=s, in agreement with the uncer-
tainty limited width of the impurity wave packet. The
atoms in the tail are scattered out of the main peak and,
qualitatively, the tail represents the one-dimensional ana-
log of the s-wave scattering spheres previously observed in
three dimensions [29] but including multiple scattering
events. The length of the tail is in good agreement with
the results presented in Fig. 4. We observe a distinct mini-
mum between the main peak and the tail [see Fig. 5(d)] for
large values of �. This minimum could reflect the increas-
ing fermionic nature of the atoms in the gas. Since our
impurity initially was a constituent of the Tonks-Girardeau
gas, the two-body collision rate may still be related to the

density-density correlation function gð2ÞðrÞ and becomes
suppressed on the length scale of r � 1=n1D as the gas
fermionizes [12]. Then collisions between the impurities
and the trapped atoms would be suppressed at the very
beginning of the dynamics. Quantitatively, the width of the
minimum of scattered atoms in the time-of-flight image
agrees with a suppression of collisions over the length
scale�1=n1D in situ. A comparison experiment performed
with a weakly interacting three-dimensional Bose-Einstein
condensate did not reveal a similar feature.

In conclusion, we have studied quantum transport of
spin impurity atoms through a strongly interacting one-
dimensional Bose gas. For pseudospin-1=2 or spin-1 Bose
gases as the majority component our tomographic detec-
tion technique could reveal fundamental properties of spin
transport [19] and spin-charge separation [20].

We are grateful to D. Gangardt, C. Kollath, B. Simons,
and W. Zwerger for discussions and the workshop of the
Cavendish Laboratory, M. Goodrick, and T. Stöferle for
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FIG. 5 (color online). Time-of-flight
image of the impurity atoms and corre-
sponding profiles of the optical column
density. The images are averaged over 5–
10 repetitions of the experiment. Im-
purities released from a lattice of poten-
tial depth 15Erecð� ¼ 3Þ [(a), squares],
30Erecð� ¼ 5Þ [(b), open circles], and
45Erecð� ¼ 7Þ [(c), full circles] taken
18.7 ms after the radio frequency pulse.
Both the number of atoms scattered out
of the main peak and the length of the
distribution of the scattered atoms in-
creases with increasing �. The curves in
(d) have been offset vertically for clarity.
The width of the atomic density distri-
bution corresponds to the first Brillouin
zone of the optical lattice.
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