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The very small size of optical nonlinearities places strict restrictions on the types of novel physics one

can explore. This work describes how a single artificial multilevel Cooper pair box molecule, interacting

with a superconducting microwave coplanar resonator, when suitably driven, can generate extremely large

optical nonlinearities at microwave frequencies, with no associated absorption. We describe how the giant

self-Kerr effect can be detected by measuring the second-order correlation function and quadrature

squeezing spectrum.
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Introduction.—Given a sufficiently large optical non-
linearity with low quantum noise, it should be possible to
generate and observe strictly quantum effects in electro-
magnetic fields. Examples of such effects include quad-
rature squeezing [1], generation of a superposition of
macroscopically distinct quantum states [2], optical
switching with single photons [3], and measurements of
nonlocal correlations of entangled photon states [4]. So far,
the successful demonstration of these effects has been
limited to implementations with photons and atoms. The
main obstacle for such an implementation—spontaneous
emission—can be bypassed by exploiting quantum coher-
ence effects in multilevel atoms. Such effects include
coherent population trapping [5], electromagnetically in-
duced transparency (EIT) [6], and others.

Recently, a novel system was shown to be capable of
implementing basic quantum optical systems. Circuit
quantum electrodynamics is an on-the-chip counterpart
of cavity QED systems [7], that employs a quantized
microwave mode held in a coplanar waveguide resonator
(CPW) (substituting the standing-wave optical cavity) and
a Cooper pair box (CPB) (instead of a two-level atom
trapped in the cavity). This system offers an unprecedented
level of tunability and flexibility in the implementation of
the strong-coupling interaction limit. The aim of this Letter
is to show that, by designing and utilizing multilevel
coherent processes in ‘‘artificial superconducting atoms,’’
circuit-QED systems can display effects completely analo-
gous to coherent population trapping and EIT. In this
Letter, we show that by designing a specific type of four-
level artificial superconducting atom, and arranging for
EIT in this system when coupled to the CPW, one obtains
a giant-Kerr nonlinearity (Fig. 1). EIT is based on the use
of dark resonance where quantum interference cancels the
absorption of the probe signal. A strongly detuned fourth
level provides an ac-Stark shift to the ground state j3i,
resulting in a self-Kerr nonlinearity free of spontaneous
emission noise. Schmidt and Imamoğlu [8] predicted that
this N scheme can give rise to several orders of magnitude
enhancement in Kerr nonlinearity as compared to conven-

tional schemes. Their prediction has been verified in a re-
cent experiment by Kang and Zhu [9], although in a semi-
classical regime. In our work, we show that due to the very
strong coupling between the artificial superconducting
atom and the CPW, the resulting giant-Kerr nonlinearity
is predicted to be 3 to 4 orders of magnitude larger than
what has been experimentally demonstrated so far. More-
over, we predict that the effect could be quite robust against
dephasing. The presence of such large Kerr nonlinearities
in a high-finesse cavity could result in a complete photon
blockade giving an effective two-level behavior for the
cavity mode [10–14] and a source of well resolved single
photons. It could also be potentially adopted for use as a
microwave single photon detector and to implement condi-
tional quantum logic.
Below we show that one way to tailor the required

multilevel artificial superconducting atom, giving a four-
level N scheme (4 atomic levels with transitions in the
shape of the letter N), is via the straightforward capacitive
coupling of two CPBs. When this system is coupled to a

FIG. 1. N system [8], constructed from two coupled two-level
CPB systems where transitions j1i $ j2i and j3i $ j4i are
coupled with strengths g1, g2 to the microwave photonic mode
â of frequency !a, held in the CPW resonator. The transition
j2i $ j3i is driven by the semiclassical control field �c, while
�ij denotes the decay rate from jii ! jji. We define � ¼ !34 �
!a and � ¼ !12 �!a.
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quantized CPW field, a severe photon blockade can be
observed, corresponding to a huge nonlinear photon-
photon interaction. The effect of quadrature squeezing is
also predicted. Together, the Giant-Kerr effect of the N
scheme, with the very strong coupling in circuit quantum
electrodynamics (due to the large dipole moment of the
CPB and the small mode volume of the CPW), gives the
possibility of immensely large optical nonlinearities at the
single photon level.

CPB molecule.—Normally CPBs are operated at the
charge degeneracy point and act as an effective two-level
system when the charging energy greatly exceeds the
Josephson energy, i.e., EC � EJ. To model a multilevel
atomic system, one can capacitively couple two CPBs
together to form a CPB molecule. For weak coupling, the
CPB molecule’s states j"#i, j#"i are nearly degenerate,
while for large coupling the corresponding eigenstates
are nonperturbative superpositions of these bare states
and are strongly split. This results in a formation of a
multilevel system [15]. For zero detunings � ¼ � ¼ 0,
we arrange for resonance between the 34, 12 transitions
and the cavity,!34 ¼ !12 ¼ !a. We now show that by op-
erating the capacitively coupled CPBs at the coresonance
point, a symmetric N system is realized (see Fig. 1). With
this design, we also have the important flexibility to adjust
the level structure: by tuning the flux threading of the CPBs
equally within the CPB molecule, an asymmetry is intro-
duced leading to nonzero detunings �, �.

Considering two capacitively coupled CPBs [Fig. 2(a)],
the associated Hamiltonian is a combination of ‘‘Kinetic’’
(KE) and ‘‘Potential’’ (PE) terms associated with the phase
difference of the wave functions across each Josephson
junction �1ð2Þ. Denoting the voltage drop across the jth

Josephson junction as Vj givesKE ¼ 1=2
P

2
j¼1ðCðjÞVðjÞ2þ

CðjÞ
g VðjÞ2

g Þ þ 1=2CðmÞVðmÞ2, while the total PE ¼P
2
k¼1 E

ðkÞ
J ð1� cos�ðkÞÞ. EðkÞ

J is the Josephson energy of

the kth junction. Starting from Kirchoff’s laws, we obtain

the classical Hamiltonian

H ¼ X2
j¼1

�
EðjÞ
c ðnðjÞ � NðjÞ

g Þ2 þ EðjÞ
J ð1� cos�ðjÞÞ

�

þ Emðnð1Þ � Nð1Þ
g Þðnð2Þ � Nð2Þ

g Þ; (1)

where the following quantities have been defined:

fEðjÞ
C ; Emg ¼ 0:5ð2eÞ2fðCðjÞ

effÞ�1; ðCðmÞ
eff Þ�1g, fCðjÞ

eff ; C
ðmÞ
eff g ¼

�fðC�f1;2gnfjg Þ�1; ðCðmÞÞ�1g, � ¼ C�1
C�2

� CðmÞ2, C�j
¼

CðmÞ þ CðjÞ
g þ CðjÞ, and where the number of excess

Cooper Pairs on the gates is NðjÞ
g ¼ �CðjÞ

g VðjÞ=ð2eÞ. We
consider the quantized version of (1) and focus on the low

energy dynamics by only including jnð1Þ; nð2Þi, nðjÞ ¼ 1, 2
states in an expansion of the Hamiltonian operator. Setting

�ðjÞ � NðjÞ
g � 1=2, and denoting Ẑ ¼ j0ih0j � j1ih1j, X̂ ¼

j0ih1j þ j1ih0j gives

Ĥ=@ ¼ X2
j¼1

ð!ðjÞ
z �ðjÞẐðjÞ �!ðjÞ

x X̂ðjÞÞ þ JẐð1ÞẐð2Þ; (2)

where @!ðjÞ
z ¼ EðjÞ

C þ Em=2, @!ðjÞ
x ¼ EðjÞ

J =2, and @J ¼
Em=4. If the individual CPBs are identical, then the indi-
vidual Josephson energies in (2) can be modulated by local

flux tuning via @!ðjÞ
x ¼ EðjÞ

J ¼ 2EJ cosð��ðjÞ=�0Þ. Work-

ing at the coresonance point �ðjÞ ¼ 0, and setting !ð1Þ
x ¼

!ð2Þ
x ¼ !x yields

Ĥ=@ ¼ �!xðX̂ð1Þ þ X̂ð2ÞÞ þ JẐð1ÞẐð2Þ: (3)

The eigenenergies of (3), labeled as in Fig. 1, are
ðE4; E2; E3; E1Þ ¼ J � ð�; 1;�1;��Þ, where �2 ¼
1þ 4!2

x=J
2. The transition frequencies are then !21 ¼

!42 ¼ Jð�þ 1Þ and !23 ¼ 2J. To arrange for nonzero
detunings � � � (i.e., R � !42=!21 � 1), one must
move slightly off the coresonance point by introducing
equal strength Zeeman terms in (2),

Ĥ=@ ¼ X2
j¼1

�!ðjÞ
z ẐðjÞ �!xðX̂ð1Þ þ X̂ð2ÞÞ þ JẐð1ÞẐð2Þ; (4)

with �!ðjÞ
z ¼ !ðjÞ

z �ðjÞ. R can be set to any value R � 1 so
adjusting �!z and!x fixes the detunings�, � to any desired
value without individually addressing each CPB.
To estimate the size of the coupling J, consider a closely

spaced pair of CPBs as shown in Fig. 2(b) [16]. The
capacitance between the two CPBs can be expressed as

CðmÞ ¼ 2�r��0w=�, where � ¼ Kð2rl Þ þ Kð2wl Þ �
Kð2ðwþrÞ

l Þ, with KðxÞ ¼ xsinh�1ð1=xÞ þ sinh�1ðxÞ and � ¼
9 the relative permittivity of the substrate material [17]. We
can estimate that if ðl; w; rÞ ¼ ð50; 10; 0:5Þ �mwe obtain a

large splitting: ð!ðjÞ
z ; JÞ ¼ ð14:7; 2:3Þ GHz. Because of the

nonlinear relationship between CðmÞ and @J ¼ Em=4, the
frequency !32 � 2J for the coresonance case can be set to
be MHz-GHz depending on the CPB geometry. The value

Eð1;2Þ
max ¼ 2!ð1;2Þ

x � 8 GHz [7] can be reduced via adjusting
the flux threading of both CPB (assuming identical CPBs

GND PLANE

CENTRAL CONDUCTOR

(A)

(B)

FIG. 2 (color online). (A) Circuit of two capacitively coupled
CPBs with individual gate bias; (B) Schematic of possible
physical arrangement of an identical (�L ¼ �R) pair of CPBs
to yield a CPB molecule.
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�L ¼ �R). As a prototype, we choose !43 ¼ !21 ¼
!a ¼ 5 GHz, giving vanishing detunings � ¼ � ¼ 0, if

one arranges to work at the coresonance point �ð1;2Þ ¼ 0.
Then by driving the 2 $ 3 transition with rf at frequency

!23, one gets J ¼ 0:2 GHz, and !ð1;2Þ
x ¼ Eð1;2Þ

J ¼
2:6 GHz. To arrange for nonvanishing detunings, for ex-
ample, we can choose to set !x=2� ¼ 4 GHz, J=2� ¼
0:2 GHz, !ð1Þ

z ¼ !ð2Þ
z ¼ 2�� 16 GHz, and with �=2� ¼

100 kHz, one can obtain significant differences between
the transition frequencies �R � !34 �!12, to yield �R=��
1. One can achieve these moderate detunings even when
the gate bias is offset from the precise coresonance point by

a tiny amount �ð1Þ ¼ �ð2Þ ¼ 2:8� 10�3. In the special case
of identical CPBs operating exactly at the coresonance
point, one has selection rules which could alter the tran-
sition strengths within our system, but as we work off
coresonance we expect all transitions and decay paths to
be allowed. This is a significant departure from the atomic
N system studied in [8], and we will include all of these
decay routes in our full model below.

Giant-Kerr nonlinearity.—It was shown [10–13] that an
N system similar to one described in Fig. 1 yields an
effective Kerr nonlinearity. Because of the absence of
selection rules, we consider all possible decay paths with

rates �ij. Drummond and Walls [18] analyzed the pure 	ð3Þ

(third-order optical nonlinear susceptibility [1], Sect. 5.4),

Hamiltonian Ĥeff ¼ @
ây2â2 in the presence of a dissipa-
tive cavity, and using this we will estimate the size of the
effective self-Kerr nonlinearity 
 we observe in our effec-
tive N system. For large 
, the system emits photons in an
antibunched manner, with large waiting times between
single photon emissions. To probe these effects, the

second-order correlation function gð2Þð�Þ ¼ hayðtÞayðtþ
�Þaðtþ �ÞaðtÞi=hayðtÞaðtÞi2 will be calculated, in particu-

lar gð2Þð0Þ, for the weakly pumped cavity. This quantity is
accepted as a good measure for photon blockade
[10,12,14,19], and allows for a direct comparison with
the analytical expression obtained in [18].

Before examining the combined resonator-CPB mole-
cule in detail, we can find a rough estimate for the achiev-
able nonlinearity 
 using parameters from recent optical
turnstile experiments (see Table I), taking [12]


 ¼
�
g1
�c

�
2
�

g22�

�2
43 þ �2

� g21�

ð�21 þ �23Þ2 þ �2

�
; (5)

which holds in the limit of ðg1=�cÞ2 � 1 [11].
For the resonator-CPB-molecule system, we set �21 ¼

�23 ¼ �43 ¼ � ¼ 1=T1, where T1 is the lifetime of the
single CPB excited state, and we take T1 ¼ 10 �s, � ¼
1 MHz, and choose ð�; �;�cÞ ¼ ð10; 0; 1Þ�. We choose
the cross relaxation rates �42;31;41 to vanish (only for the

purpose of this estimate) and g1 ¼ g2 ¼ g ¼ 300�, to
obtain the enormously large Giant self-Kerr strength 
 �
10� 109�. Although (5) only holds when gj=�C � 1,

this computation gives one the hint that the system (with

all decay channels operational) may yield very large non-
linearities, and in the next section we model the full system
to numerically verify this.
Numerical investigations.—Estimating the size of the

effective nonlinearity 
 when gj >�c is not straightfor-

ward, as the adiabatic approximation is not permitted [10].
For that reason, we solve the master equation for the
density operator �, given by _� ¼ _�sys þL�, where

_�sys ¼ �i�21½
22; �	 � i�31½
33; �	 � i�41½
44; �	
� ig1½ay
12 þ 
21a; �	 � ig2½ay
34 þ 
43a; �	
� i½�


c
32 þ 
23�c; �	 � iEp½aþ ay; �	; (6)

and L� ¼ �D½a	�þP
ðijÞ�ijD½
ji	�, where D½A	B �

2ABAy � fAyA; Bg. Here, 
ij describes atomic transition

operators X̂ðijÞ ¼ 
ij þ 
ji for i � j, while 
jj models

dephasing. Ep �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�=!a

p
is the amplitude of an electric

field driving the resonator mode, where P is the power of
the field incident on the resonator. Summation over (ij)
includes all decay channels shown in Fig. 1. We solve _� ¼
0 numerically to obtain gð2Þð0Þ. Figure 3 shows the depen-
dence on pump strength and (classical) coupling field
strength. The correlation function increases with pump
strength [14]. The dependence on the coupling field shows
a decrease to a minimum (solid black line) followed by an
increase. This is a consequence of a nonvanishing decay
�31. Increasing�c pumps the population in j1i and dimin-

ishes the effect of decay �31, hence the decrease in g
ð2Þð0Þ.

Subsequent increase with �c is due to a reduction in the

nonlinearity (5). Using the analytical result for gð2Þð0Þ as a
function of Ep=� in [18], the effective self-Kerr nonline-

arity
=� can be deduced (shown in the inset of Fig. 3). For
weak driving, effective 
=�� 103 � 104 can be obtained.
As highlighted in the introduction, using this ‘‘artificial N
system,’’ optical nonlinearities of unprecedented strengths
are achievable using circuit QED. This result is robust

TABLE I. Table of 
 from Eqn (5), measuring the size of the
effective self-Kerr nonlinearity for various quantum systems
coupled to cavities. We take the quoted values for (g, �, �),
and consider additional driving (see Fig. 1) such that ðg=�cÞ2 ¼
0:1, [condition of validity for Eq. (5)], take ð�; �Þ ¼ ð�; 0Þ and
�i ¼ �. The effective self-Kerr nonlinearity for the CPB mole-
cule/CPW system has the potential to be extremely large. The
actual model studied in this Letter contains extra decays in
addition to those traditionally studied in N systems.

Work

g=2�
ðMHzÞ

�=2�
ðMHzÞ

�=2�
ðMHzÞ 
=�

Ref. [20] 8000 16 000 100 2

Ref. [21] 16 1.4 3 3

Ref. [22] 33 4.1 2.5 5.4

Ref. [10] 120 40 2.6 6.9

Ref. [23] 20

CPB Molecule 300 1 0.1 45 000
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against dephasing. When we include identical rates of
dephasing on all levels (taking �kk ¼ �ph � 2:5�ij, as
seen in experiments when working off the critical point),
we find that
 is an order of magnitude smaller than what is
shown in Fig. 3. Decreasing Ep=� further allows one to

reach values shown in the figure (and higher), and the use
of transmons [24] could reduce the dephasing rate when
working off the critical point.

Self-Kerr systems can produce some degree quadrature
squeezing [25]. In Fig. 4, the spectrum of maximum
squeezing (belonging to the amplitude quadrature) is
shown. The regime where maximum squeezing is obtained

[Fig. 4(b)] is closer to the four-wave mixing regime. Given
the presence of six coherence-destroying spontaneous
decay channels, the result of Fig. 4 is remarkable, since
pure dispersive Kerr medium can only achieve a squeezing
of 2

3 [25].

While the measurement of squeezing is easy to imple-
ment using homodyne techniques, the measurement of
second-order correlations involves efficient photon coun-
ters [19], which are not currently available in the micro-
wave regime. We note, however, a recent technique [26] to

obtain gð2Þð0Þ by homodyne methods.
In conclusion, we have shown that an ‘‘artificial’’ multi-

level system in circuit QED produces the effective non-
linearity orders of magnitude larger than previously
known.
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[8] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[9] H. Kang and Y. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
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FIG. 3 (color online). Graph of log10½gð2Þð0Þ	 for g ¼ 300,
�23 ¼ �41 ¼ 0:01, and �21 ¼ �43 ¼ �31 ¼ �43 ¼ 0:1, in units
of �, and ð�; �Þ ¼ ð0:5; 0:5Þ. For low Ep and moderately large

pumping �c, the autocorrelation drops to extremely low values
�10�6. The solid line indicates minimum gð2Þð0Þ. The inset
shows the effective nonlinear coefficient 
 vs Ep deduced
from [18], for the minimum gð2Þð0Þ (see text for details). The
average photon number is �n� 10�2 for maximal value of the
nonlinearity.
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FIG. 4. Spectrum of squeezing Sð!=�Þ, for ð�; �; g; EpÞ ¼
ð5:13;�4:89; 300; 0:14Þ and (A) �c ¼ 50, or (B) �c ¼ 1200,
and where �23 ¼ �41 ¼ 0:01 and �21 ¼ �43 ¼ �31 ¼ �43 ¼ 0:1
in units of �.
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